Pub Date : 2021-04-02DOI: 10.5772/INTECHOPEN.97273
M. Sultan, Hadeed Ashraf, T. Miyazaki, R. Shamshiri, I. Hameed
Temperature and humidity control are crucial in next generation greenhouses. Plants require optimum temperature/humidity and vapor pressure deficit conditions inside the greenhouse for optimum yield. In this regard, an air-conditioning system could provide the required conditions in harsh climatic regions. In this study, the authors have summarized their published work on different desiccant and evaporative cooling options for greenhouse air-conditioning. The direct, indirect, and Maisotsenko cycle evaporative cooling systems, and multi-stage evaporative cooling systems have been summarized in this study. Different desiccant materials i.e., silica-gels, activated carbons (powder and fiber), polymer sorbents, and metal organic frameworks have also been summarized in this study along with different desiccant air-conditioning options. However, different high-performance zeolites and molecular sieves are extensively studied in literature. The authors conclude that solar operated desiccant based evaporative cooling systems could be an alternate option for next generation greenhouse air-conditioning.
{"title":"Temperature and Humidity Control for the Next Generation Greenhouses: Overview of Desiccant and Evaporative Cooling Systems","authors":"M. Sultan, Hadeed Ashraf, T. Miyazaki, R. Shamshiri, I. Hameed","doi":"10.5772/INTECHOPEN.97273","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.97273","url":null,"abstract":"Temperature and humidity control are crucial in next generation greenhouses. Plants require optimum temperature/humidity and vapor pressure deficit conditions inside the greenhouse for optimum yield. In this regard, an air-conditioning system could provide the required conditions in harsh climatic regions. In this study, the authors have summarized their published work on different desiccant and evaporative cooling options for greenhouse air-conditioning. The direct, indirect, and Maisotsenko cycle evaporative cooling systems, and multi-stage evaporative cooling systems have been summarized in this study. Different desiccant materials i.e., silica-gels, activated carbons (powder and fiber), polymer sorbents, and metal organic frameworks have also been summarized in this study along with different desiccant air-conditioning options. However, different high-performance zeolites and molecular sieves are extensively studied in literature. The authors conclude that solar operated desiccant based evaporative cooling systems could be an alternate option for next generation greenhouse air-conditioning.","PeriodicalId":448491,"journal":{"name":"Next-Generation Greenhouses for Food Security","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116919972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-09DOI: 10.5772/INTECHOPEN.95842
A. Muhammad, A. Shitu, Umar Abdulbaki Danhassan, M. Kabir, M. A. Tadda, A. Lawal
This chapter discussed the greenhouse requirement for soilless crop production. It further introduced soilless crop production and elucidated the equipment required for an efficient production system covering greenhouse environmental control and management of temperature, humidity, lighting, and nutrients using innovative strategies. Also, the energy required for the control of the greenhouse environmental conditions during the crop production cycle was explained. Identification and management of pests and diseases using wireless network sensors and the Internet of Things for efficient and safe food production were also highlighted. Finally, the challenges facing greenhouse crop production itemized, and the prospects of greenhouse technology for sustainable healthy food production were proposed.
{"title":"Greenhouse Requirements for Soilless Crop Production: Challenges and Prospects for Plant Factories","authors":"A. Muhammad, A. Shitu, Umar Abdulbaki Danhassan, M. Kabir, M. A. Tadda, A. Lawal","doi":"10.5772/INTECHOPEN.95842","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.95842","url":null,"abstract":"This chapter discussed the greenhouse requirement for soilless crop production. It further introduced soilless crop production and elucidated the equipment required for an efficient production system covering greenhouse environmental control and management of temperature, humidity, lighting, and nutrients using innovative strategies. Also, the energy required for the control of the greenhouse environmental conditions during the crop production cycle was explained. Identification and management of pests and diseases using wireless network sensors and the Internet of Things for efficient and safe food production were also highlighted. Finally, the challenges facing greenhouse crop production itemized, and the prospects of greenhouse technology for sustainable healthy food production were proposed.","PeriodicalId":448491,"journal":{"name":"Next-Generation Greenhouses for Food Security","volume":"152 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116398765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}