Pub Date : 2023-11-11DOI: 10.1186/s40703-023-00200-2
Nhu Son Doan
Abstract Slope stabilities are mainly designed using the conventional design approach (CDA), where the limit equilibrium methods (LEMs) are performed. Fellenius and Bishop’s simplified methods are the two commonly LEMs adopted as recommended in most design codes. In the design process of CDA, the safety factors (FS) of slopes are checked with specified FSs to ensure stability. The CDA has inherent drawbacks because the design process does not account for uncertainties. Moreover, different LEMs using different assumptions to solve the safety factors might include some amount orders of approximations. This study conducts probabilistic analyses, i.e., Monte Carlo simulations (MCSs) and uncertainty quantification, to obtain insights into the two LEMs applied to clay and sand slopes. The results reveal that the reliability indexes (RIs) obtained from the two LEMs-based MCSs are relatively identical for the same slope. Concerning the soil types, however, the RIs of the clay slope are significantly lower than those estimated for the sand slope, regardless of the LEMs used. The uncertainty quantifications for the clay slopes reveal that the two LEMs have relatively similar bias factors regarding FSs. Nevertheless, using the Fellenius method underestimates the probabilistic safety (about 17% in terms of the mean of FSs) for the sand slope compared to Bishop’s simplified method. Moreover, the coefficients of variation of FS obtained from the clay slope are consistently larger than those from the sand slope. These observations imply that the clay slope is more uncertain than the sand slope, and the Fellenius method results in lower FSs for sand slopes. Therefore, the FSs specified in the design codes should be connected to the soil type or the LEMs used to achieve the same probabilistic safety levels. Finally, the equivalent FSs associated with a RI of 1.75 are derived for each slope and each LEM used.
{"title":"Reliability analysis and uncertainty quantification of clay and sand slopes stability evaluated by Fellenius and Bishop’s simplified methods","authors":"Nhu Son Doan","doi":"10.1186/s40703-023-00200-2","DOIUrl":"https://doi.org/10.1186/s40703-023-00200-2","url":null,"abstract":"Abstract Slope stabilities are mainly designed using the conventional design approach (CDA), where the limit equilibrium methods (LEMs) are performed. Fellenius and Bishop’s simplified methods are the two commonly LEMs adopted as recommended in most design codes. In the design process of CDA, the safety factors (FS) of slopes are checked with specified FSs to ensure stability. The CDA has inherent drawbacks because the design process does not account for uncertainties. Moreover, different LEMs using different assumptions to solve the safety factors might include some amount orders of approximations. This study conducts probabilistic analyses, i.e., Monte Carlo simulations (MCSs) and uncertainty quantification, to obtain insights into the two LEMs applied to clay and sand slopes. The results reveal that the reliability indexes (RIs) obtained from the two LEMs-based MCSs are relatively identical for the same slope. Concerning the soil types, however, the RIs of the clay slope are significantly lower than those estimated for the sand slope, regardless of the LEMs used. The uncertainty quantifications for the clay slopes reveal that the two LEMs have relatively similar bias factors regarding FSs. Nevertheless, using the Fellenius method underestimates the probabilistic safety (about 17% in terms of the mean of FSs) for the sand slope compared to Bishop’s simplified method. Moreover, the coefficients of variation of FS obtained from the clay slope are consistently larger than those from the sand slope. These observations imply that the clay slope is more uncertain than the sand slope, and the Fellenius method results in lower FSs for sand slopes. Therefore, the FSs specified in the design codes should be connected to the soil type or the LEMs used to achieve the same probabilistic safety levels. Finally, the equivalent FSs associated with a RI of 1.75 are derived for each slope and each LEM used.","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":"23 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.1186/s40703-023-00195-w
Siavash Zamani, Seyed Hamid Lajevardi, Akbar Yarivand, Ehsanolah Zeighami
Abstract Bearing capacity of reinforced footing clearly depends on the characteristics of interface between geosynthetic and soil. A suitable solution for increasing the bearing capacity is to treat the geotextile surface by various additives. This study reported the results of plate load test on square model footing resting on reinforced sand with and without treated geotextiles to survey the effects of the treatment of geotextile on settlement and bearing capacity. The treated geotextiles were made using additives onto the surface, with a layer of sand located on the top. Geotextile sides were treated in the same way. Different additives including the lime, cement, emulsion, and the effect of the number of layers were considered. The bearing capacity ratio values (BCR), improvement ratio values (IR) and variation of load-settlement ratio obtained from the treated models were presented. The results showed that the treatment of geotextile has a great effect on the behavior of reinforced sand and thus bearing capacity. Also, the test results indicated that lime-treated geotextiles provided better improvement than other additives. The maximum improvement in the bearing capacity of square footing supported on treated geotextiles was found to be 75% compared with the pristine geotextiles.
{"title":"Experimental study of the behavior of square footing on reinforced sand with treated geotextile","authors":"Siavash Zamani, Seyed Hamid Lajevardi, Akbar Yarivand, Ehsanolah Zeighami","doi":"10.1186/s40703-023-00195-w","DOIUrl":"https://doi.org/10.1186/s40703-023-00195-w","url":null,"abstract":"Abstract Bearing capacity of reinforced footing clearly depends on the characteristics of interface between geosynthetic and soil. A suitable solution for increasing the bearing capacity is to treat the geotextile surface by various additives. This study reported the results of plate load test on square model footing resting on reinforced sand with and without treated geotextiles to survey the effects of the treatment of geotextile on settlement and bearing capacity. The treated geotextiles were made using additives onto the surface, with a layer of sand located on the top. Geotextile sides were treated in the same way. Different additives including the lime, cement, emulsion, and the effect of the number of layers were considered. The bearing capacity ratio values (BCR), improvement ratio values (IR) and variation of load-settlement ratio obtained from the treated models were presented. The results showed that the treatment of geotextile has a great effect on the behavior of reinforced sand and thus bearing capacity. Also, the test results indicated that lime-treated geotextiles provided better improvement than other additives. The maximum improvement in the bearing capacity of square footing supported on treated geotextiles was found to be 75% compared with the pristine geotextiles.","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":"1982 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135637337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.1186/s40703-023-00199-6
Amin Zivari, Mehdi Siavoshnia, Hamed Rezaei
Abstract Loess soils have always been among the most problematic soils, according to engineers. Due to the sensitivity and vulnerability of this soil type, researchers are constantly looking for different solutions to improve and stabilize this soil using different methods. In the present study, a mixture of lime and rice husk ash (LRHA) was used to modify the loess soil of the Golestan province, Iran. Lime and RHA were mixed in a ratio of 2:4 and with different contents of 2.5, 5, 7.5, 10 and 12.5% of the dry weight of the soil. To study the effect of curing on the strength properties, the samples were cured and tested for 7, 18 and 28 days. Atterberg limits, modified Proctor, unconfined compressive strength (UCS) and scanning electron microscope tests (SEM) were performed. It was found that increasing LRHA content increased the value of UCS at different curing times, such that UCS increased about five times by the addition of 5% LRHA to the loess at the end of 28 days. As the curing time increased, the optimum amount of the additive also decreased. The results showed that combining the soil with LRHA is an effective method for improving and stabilizing loess soil. According to the results of the study, the optimum value of 5% additive is economically and technically recommended.
{"title":"Effect of lime-rice husk ash on geotechnical properties of loess soil in Golestan province, Iran","authors":"Amin Zivari, Mehdi Siavoshnia, Hamed Rezaei","doi":"10.1186/s40703-023-00199-6","DOIUrl":"https://doi.org/10.1186/s40703-023-00199-6","url":null,"abstract":"Abstract Loess soils have always been among the most problematic soils, according to engineers. Due to the sensitivity and vulnerability of this soil type, researchers are constantly looking for different solutions to improve and stabilize this soil using different methods. In the present study, a mixture of lime and rice husk ash (LRHA) was used to modify the loess soil of the Golestan province, Iran. Lime and RHA were mixed in a ratio of 2:4 and with different contents of 2.5, 5, 7.5, 10 and 12.5% of the dry weight of the soil. To study the effect of curing on the strength properties, the samples were cured and tested for 7, 18 and 28 days. Atterberg limits, modified Proctor, unconfined compressive strength (UCS) and scanning electron microscope tests (SEM) were performed. It was found that increasing LRHA content increased the value of UCS at different curing times, such that UCS increased about five times by the addition of 5% LRHA to the loess at the end of 28 days. As the curing time increased, the optimum amount of the additive also decreased. The results showed that combining the soil with LRHA is an effective method for improving and stabilizing loess soil. According to the results of the study, the optimum value of 5% additive is economically and technically recommended.","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":"398 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.1186/s40703-023-00191-0
Ch Mohammad Abbas Iftikhar, Akhtar S. Khan, Venkata Nambori
Abstract For the first time, axial and circumferential (diametral) strains are measured directly on Berea sandstone cylindrical samples at different high temperatures as a function of confining pressure. The maximum compressive principal stress was in the direction perpendicular to the bedding plane. Tri-axial compression tests have been conducted under confining pressures ranging from atmospheric pressure to 12,000 psi “82.73 MPa” (gage), and the temperature was varied from room temperature (RT) to 250°F (121.11 °C). In all the experiments, specimens are dry, and no pore pressure is applied. Uniaxial axial force (100 lbs/min or 444.82 N/min) and strains in the three directions ( $$varepsilon$$ ε 1 , $$varepsilon$$ ε 2 , $$varepsilon$$ ε 3 ) is directly measured from the strain gages mounted on the specimen; hence the study reflects the behavior of the Berea sandstone up to the initiation of the failure only. The experimental observations involving yield, failure, transition from brittle to ductile behavior, and their dependence on temperature and confining pressure are presented. Parameters like ductility and dilatancy (reflecting volumetric behavior before failure) and their variation with temperature and confining pressure are given. The initial yield and failure of Berea sandstone are presented in terms of the generalized von-Mises criteria, i.e., variation of octahedral shear stress ("Image missing") with the mean stress. The loads at yield and failure are found to decrease with increasing temperature and augment with increasing confining pressure. The ductility and dilatancy reduction are computed using measured strains with increasing temperature. With an increase in temperature, the volume decreases first, partly due to the initial closure of micro cracks and voids, then increases due to generation of additional microcracks and voids (damage). There is less volume decrease in the uniaxial test response at higher temperature as compared to the corresponding ambient temperature response. A monotonic increase in the octahedral shear stress at yield and failure is observed with increasing confining pressure.
{"title":"The effect of temperature on the mechanical behavior of Berea sandstone under confining pressure: experiments","authors":"Ch Mohammad Abbas Iftikhar, Akhtar S. Khan, Venkata Nambori","doi":"10.1186/s40703-023-00191-0","DOIUrl":"https://doi.org/10.1186/s40703-023-00191-0","url":null,"abstract":"Abstract For the first time, axial and circumferential (diametral) strains are measured directly on Berea sandstone cylindrical samples at different high temperatures as a function of confining pressure. The maximum compressive principal stress was in the direction perpendicular to the bedding plane. Tri-axial compression tests have been conducted under confining pressures ranging from atmospheric pressure to 12,000 psi “82.73 MPa” (gage), and the temperature was varied from room temperature (RT) to 250°F (121.11 °C). In all the experiments, specimens are dry, and no pore pressure is applied. Uniaxial axial force (100 lbs/min or 444.82 N/min) and strains in the three directions ( $$varepsilon$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ε</mml:mi> </mml:math> 1 , $$varepsilon$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ε</mml:mi> </mml:math> 2 , $$varepsilon$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ε</mml:mi> </mml:math> 3 ) is directly measured from the strain gages mounted on the specimen; hence the study reflects the behavior of the Berea sandstone up to the initiation of the failure only. The experimental observations involving yield, failure, transition from brittle to ductile behavior, and their dependence on temperature and confining pressure are presented. Parameters like ductility and dilatancy (reflecting volumetric behavior before failure) and their variation with temperature and confining pressure are given. The initial yield and failure of Berea sandstone are presented in terms of the generalized von-Mises criteria, i.e., variation of octahedral shear stress (\"Image missing\"<!-- image only, no MathML or LaTex -->) with the mean stress. The loads at yield and failure are found to decrease with increasing temperature and augment with increasing confining pressure. The ductility and dilatancy reduction are computed using measured strains with increasing temperature. With an increase in temperature, the volume decreases first, partly due to the initial closure of micro cracks and voids, then increases due to generation of additional microcracks and voids (damage). There is less volume decrease in the uniaxial test response at higher temperature as compared to the corresponding ambient temperature response. A monotonic increase in the octahedral shear stress at yield and failure is observed with increasing confining pressure.","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":"70 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135933002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1186/s40703-023-00197-8
Hailu Regasa, Muralitharan Jothimani, Yonas Oyda
Abstract This study examined the index properties, strength, and swelling pressure by mixing the Quicklime with five soil samples taken from the Meki-Abossa road section part of the Modjo- Hawassa highway. The main goal of this study was to provide more insight into the effects of Quicklime stabilization on the Atterberg limit like (LL, LP, and PI), OMC, MDD, CBR, and CBR swell percent of subgrade soil along the selected route alignment. Five disturbed samples were collected from the Meki-Abossa Road section to achieve the objectives. The samples were collected using the open pit sampling method with an average 1-1.5 m depth. Laboratory works were carried out for natural sub-grade soil and soil mixed with Quicklime. The natural sub-grade soil was classed as A-7-5 (38) by AASHTO and MH & CH by USCS, with a maximum LL of 75, PI of 41.6, MDD of 1.59, and OMC of 28, with CBR values less than five and CBR swell > 2%. The recommended lime (4%, 6%, and 8%) was mixed with the subgrade material. The result shows that the soil treated with Quicklime 4%, 6%, and 8% improved or lowered the untreated expansive soil plasticity index by 18.5%, 28.9%, and 23.8%, respectively, and increased OMC by 15.2% and reduced MDD by 18.23%. On the other hand, CBR values of the treated soil were increased by an average of 56.9%, with lower swelling potential decreases by 93.3%, higher workability, and stabilized soils were feasible to be used as subgrade material.
{"title":"Subgrade soil stabilization using the Quicklime: a case study from Modjo- Hawassa highway, Central Ethiopia","authors":"Hailu Regasa, Muralitharan Jothimani, Yonas Oyda","doi":"10.1186/s40703-023-00197-8","DOIUrl":"https://doi.org/10.1186/s40703-023-00197-8","url":null,"abstract":"Abstract This study examined the index properties, strength, and swelling pressure by mixing the Quicklime with five soil samples taken from the Meki-Abossa road section part of the Modjo- Hawassa highway. The main goal of this study was to provide more insight into the effects of Quicklime stabilization on the Atterberg limit like (LL, LP, and PI), OMC, MDD, CBR, and CBR swell percent of subgrade soil along the selected route alignment. Five disturbed samples were collected from the Meki-Abossa Road section to achieve the objectives. The samples were collected using the open pit sampling method with an average 1-1.5 m depth. Laboratory works were carried out for natural sub-grade soil and soil mixed with Quicklime. The natural sub-grade soil was classed as A-7-5 (38) by AASHTO and MH & CH by USCS, with a maximum LL of 75, PI of 41.6, MDD of 1.59, and OMC of 28, with CBR values less than five and CBR swell > 2%. The recommended lime (4%, 6%, and 8%) was mixed with the subgrade material. The result shows that the soil treated with Quicklime 4%, 6%, and 8% improved or lowered the untreated expansive soil plasticity index by 18.5%, 28.9%, and 23.8%, respectively, and increased OMC by 15.2% and reduced MDD by 18.23%. On the other hand, CBR values of the treated soil were increased by an average of 56.9%, with lower swelling potential decreases by 93.3%, higher workability, and stabilized soils were feasible to be used as subgrade material.","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":"952 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135917799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-27DOI: 10.1186/s40703-023-00196-9
Mohammed Yassir Marrah, Mamadou Fall, Husham Almansour
Abstract To ensure that public infrastructure can safely provide essential services and support economic activities in seasonal frost regions, the design of their foundation systems must be updated and/or adapted to the impacts of climate change. This objective can only be achieved, if the impact of global warming on the soil thermal behaviour in Canadian seasonal frost regions is well-known and can be predicted. In the present paper, the results of a modeling study to assess and predict the effect of global warming on the thermal regimes of grounds in three Canadian seasonal frost regions (Ottawa, Sudbury, Toronto) are presented and discussed. The results show that future climate changes will significantly affect the soil thermal regimes in seasonal frost Canadian areas. The simulation results indicated a gradual loss in the frost penetration depth due to the climate change, in the three representative sites. The frost period duration will be shorter due to climate change in the three selected regions and will completely disappear in Ottawa and Toronto. However, the impact of climate change would not appear clearly in the first 40 years “up to 2060”. The response of the ground to the effect of climate change is a function of the geotechnical characteristics of the ground and the climate conditions. The numerical tool developed and results obtained will be useful for the geotechnical design of climate-adaptive transportation structures in Canadian seasonal frost areas.
{"title":"Numerical simulation of ground thermal response in Canadian seasonal frost regions to climate warming","authors":"Mohammed Yassir Marrah, Mamadou Fall, Husham Almansour","doi":"10.1186/s40703-023-00196-9","DOIUrl":"https://doi.org/10.1186/s40703-023-00196-9","url":null,"abstract":"Abstract To ensure that public infrastructure can safely provide essential services and support economic activities in seasonal frost regions, the design of their foundation systems must be updated and/or adapted to the impacts of climate change. This objective can only be achieved, if the impact of global warming on the soil thermal behaviour in Canadian seasonal frost regions is well-known and can be predicted. In the present paper, the results of a modeling study to assess and predict the effect of global warming on the thermal regimes of grounds in three Canadian seasonal frost regions (Ottawa, Sudbury, Toronto) are presented and discussed. The results show that future climate changes will significantly affect the soil thermal regimes in seasonal frost Canadian areas. The simulation results indicated a gradual loss in the frost penetration depth due to the climate change, in the three representative sites. The frost period duration will be shorter due to climate change in the three selected regions and will completely disappear in Ottawa and Toronto. However, the impact of climate change would not appear clearly in the first 40 years “up to 2060”. The response of the ground to the effect of climate change is a function of the geotechnical characteristics of the ground and the climate conditions. The numerical tool developed and results obtained will be useful for the geotechnical design of climate-adaptive transportation structures in Canadian seasonal frost areas.","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-03DOI: 10.1186/s40703-023-00194-x
Frehaileab Admasu Gidebo, H. Yasuhara, N. Kinoshita
{"title":"Stabilization of expansive soil with agricultural waste additives: a review","authors":"Frehaileab Admasu Gidebo, H. Yasuhara, N. Kinoshita","doi":"10.1186/s40703-023-00194-x","DOIUrl":"https://doi.org/10.1186/s40703-023-00194-x","url":null,"abstract":"","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45507017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-02DOI: 10.1186/s40703-023-00192-z
Ali M. Basha, Esraa A. Eldisouky
{"title":"Effect of eccentric loads on the behavior of circular footing with/without skirts resting on sand soil","authors":"Ali M. Basha, Esraa A. Eldisouky","doi":"10.1186/s40703-023-00192-z","DOIUrl":"https://doi.org/10.1186/s40703-023-00192-z","url":null,"abstract":"","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45557475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-25DOI: 10.1186/s40703-023-00190-1
Ivan L. Guzman, Cesar Payano
{"title":"Use of repurposed whole textile for enhancement of pavement soils","authors":"Ivan L. Guzman, Cesar Payano","doi":"10.1186/s40703-023-00190-1","DOIUrl":"https://doi.org/10.1186/s40703-023-00190-1","url":null,"abstract":"","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45375314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}