首页 > 最新文献

Communications for Statistical Applications and Methods最新文献

英文 中文
A case study of competing risk analysis in the presence of missing data 数据缺失情况下的竞争风险分析案例研究
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2023-01-31 DOI: 10.29220/csam.2023.30.1.001
Limei Zhou, P. Austin, Husam Abdel-Qadira
Observational data with missing or incomplete data are common in biomedical research. Multiple imputation is an e ff ective approach to handle missing data with the ability to decrease bias while increasing statistical power and e ffi ciency. In recent years propensity score (PS) matching has been increasingly used in observational studies to estimate treatment e ff ect as it can reduce confounding due to measured baseline covariates. In this paper, we describe in detail approaches to competing risk analysis in the setting of incomplete observational data when using PS matching. First, we used multiple imputation to impute several missing variables simultaneously, then conducted propensity-score matching to match statin-exposed patients with those unexposed. Afterwards, we assessed the e ff ect of statin exposure on the risk of heart failure-related hospitalizations or emergency visits by estimating both relative and absolute e ff ects. Collectively, we provided a general methodological framework to assess treatment e ff ect in incomplete observational data. In addition, we presented a practical approach to produce overall cumulative incidence function (CIF) based on estimates from multiple imputed and PS-matched samples.
在生物医学研究中,观测数据缺失或不完整是很常见的。多重插值是一种处理缺失数据的有效方法,能够在减少偏差的同时提高统计能力和效率。近年来,倾向评分(PS)匹配越来越多地用于观察性研究,以估计治疗效果,因为它可以减少由于测量基线协变量引起的混淆。在本文中,我们详细描述了使用PS匹配时在不完整观测数据设置下的竞争风险分析方法。首先,我们使用多重归算方法同时归算多个缺失变量,然后进行倾向评分匹配,将他汀类药物暴露患者与未暴露患者进行匹配。之后,我们评估了他汀类药物暴露对心力衰竭相关住院或急诊风险的影响,估计了相对和绝对影响。总的来说,我们提供了一个通用的方法框架来评估不完整观察数据中的治疗效果。此外,我们提出了一种实用的方法,基于多个输入和ps匹配样本的估计来产生总体累积关联函数(CIF)。
{"title":"A case study of competing risk analysis in the presence of missing data","authors":"Limei Zhou, P. Austin, Husam Abdel-Qadira","doi":"10.29220/csam.2023.30.1.001","DOIUrl":"https://doi.org/10.29220/csam.2023.30.1.001","url":null,"abstract":"Observational data with missing or incomplete data are common in biomedical research. Multiple imputation is an e ff ective approach to handle missing data with the ability to decrease bias while increasing statistical power and e ffi ciency. In recent years propensity score (PS) matching has been increasingly used in observational studies to estimate treatment e ff ect as it can reduce confounding due to measured baseline covariates. In this paper, we describe in detail approaches to competing risk analysis in the setting of incomplete observational data when using PS matching. First, we used multiple imputation to impute several missing variables simultaneously, then conducted propensity-score matching to match statin-exposed patients with those unexposed. Afterwards, we assessed the e ff ect of statin exposure on the risk of heart failure-related hospitalizations or emergency visits by estimating both relative and absolute e ff ects. Collectively, we provided a general methodological framework to assess treatment e ff ect in incomplete observational data. In addition, we presented a practical approach to produce overall cumulative incidence function (CIF) based on estimates from multiple imputed and PS-matched samples.","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42898617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainability of pensions in Asian countries 亚洲国家养老金的可持续性
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2022-11-30 DOI: 10.29220/csam.2022.29.6.679
H. Shim, S. Kim, Y. Choi
{"title":"Sustainability of pensions in Asian countries","authors":"H. Shim, S. Kim, Y. Choi","doi":"10.29220/csam.2022.29.6.679","DOIUrl":"https://doi.org/10.29220/csam.2022.29.6.679","url":null,"abstract":"","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45696751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive studies of Grassmann manifold optimization and sequential candidate set algorithm in a principal fitted component model 主拟合分量模型中Grassmann流形优化和序贯候选集算法的综合研究
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2022-11-30 DOI: 10.29220/csam.2022.29.6.721
Chaeyoung Lee, J. Yoo
{"title":"Comprehensive studies of Grassmann manifold optimization and sequential candidate set algorithm in a principal fitted component model","authors":"Chaeyoung Lee, J. Yoo","doi":"10.29220/csam.2022.29.6.721","DOIUrl":"https://doi.org/10.29220/csam.2022.29.6.721","url":null,"abstract":"","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":"1 1","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41379152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of high-dimensional sparse cross correlation matrix 高维稀疏互相关矩阵的估计
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2022-11-30 DOI: 10.29220/csam.2022.29.6.655
Yin Cao, Kwang-Nam Seo, Soohyun Ahn, Johan Lim
{"title":"Estimation of high-dimensional sparse cross correlation matrix","authors":"Yin Cao, Kwang-Nam Seo, Soohyun Ahn, Johan Lim","doi":"10.29220/csam.2022.29.6.655","DOIUrl":"https://doi.org/10.29220/csam.2022.29.6.655","url":null,"abstract":"","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46460582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penalized maximum likelihood estimation with symmetric log-concave errors and LASSO penalty 利用对称对数凹误差和LASSO惩罚对最大似然估计进行惩罚
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2022-11-30 DOI: 10.29220/csam.2022.29.6.641
S. Park, Sunyul Kim, Byungtae Seo
{"title":"Penalized maximum likelihood estimation with symmetric log-concave errors and LASSO penalty","authors":"S. Park, Sunyul Kim, Byungtae Seo","doi":"10.29220/csam.2022.29.6.641","DOIUrl":"https://doi.org/10.29220/csam.2022.29.6.641","url":null,"abstract":"","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42507898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Grouping stocks using dynamic linear models 使用动态线性模型对库存进行分组
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2022-11-30 DOI: 10.29220/csam.2022.29.6.695
Sihyeon Kim, B. Seong
{"title":"Grouping stocks using dynamic linear models","authors":"Sihyeon Kim, B. Seong","doi":"10.29220/csam.2022.29.6.695","DOIUrl":"https://doi.org/10.29220/csam.2022.29.6.695","url":null,"abstract":"","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42568452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ensemble variable selection using genetic algorithm 基于遗传算法的集成变量选择
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2022-11-30 DOI: 10.29220/csam.2022.29.6.629
Seogyoung Lee, Martin Seunghwan Yang, Jongkyeong Kang, S. Shin
{"title":"Ensemble variable selection using genetic algorithm","authors":"Seogyoung Lee, Martin Seunghwan Yang, Jongkyeong Kang, S. Shin","doi":"10.29220/csam.2022.29.6.629","DOIUrl":"https://doi.org/10.29220/csam.2022.29.6.629","url":null,"abstract":"","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41977031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum product of spacings under a generalized Type-II progressive hybrid censoring scheme 广义ii型渐进式混合截尾方案下的最大间距积
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2022-11-30 DOI: 10.29220/csam.2022.29.6.665
Y. Jeon, Suk-Bok Kang, J. Seo
{"title":"Maximum product of spacings under a generalized Type-II progressive hybrid censoring scheme","authors":"Y. Jeon, Suk-Bok Kang, J. Seo","doi":"10.29220/csam.2022.29.6.665","DOIUrl":"https://doi.org/10.29220/csam.2022.29.6.665","url":null,"abstract":"","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44818885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar radiation forecasting using boosting decision tree and recurrent neural networks 基于增强决策树和递归神经网络的太阳辐射预报
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2022-11-30 DOI: 10.29220/csam.2022.29.6.709
Hyo-Sook Kim, Sujin Park, Sahm Kim
{"title":"Solar radiation forecasting using boosting decision tree and recurrent neural networks","authors":"Hyo-Sook Kim, Sujin Park, Sahm Kim","doi":"10.29220/csam.2022.29.6.709","DOIUrl":"https://doi.org/10.29220/csam.2022.29.6.709","url":null,"abstract":"","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43079883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimating the AUC of the MROC curve in the presence of measurement errors 在存在测量误差的情况下估计MROC曲线的AUC
IF 0.4 Q4 STATISTICS & PROBABILITY Pub Date : 2022-09-30 DOI: 10.29220/csam.2022.29.5.533
S. G, V. R, Asha Kamath
{"title":"Estimating the AUC of the MROC curve in the presence of measurement errors","authors":"S. G, V. R, Asha Kamath","doi":"10.29220/csam.2022.29.5.533","DOIUrl":"https://doi.org/10.29220/csam.2022.29.5.533","url":null,"abstract":"","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48723721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Communications for Statistical Applications and Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1