首页 > 最新文献

Geographia Technica最新文献

英文 中文
IDENTIFYING CLIMATE CHANGE VULNERABILITY BASED ON LAND COVER INDICATORS: A CASE STUDY IN SURABAYA, INDONESIA 基于土地覆盖指标确定气候变化脆弱性:以印度尼西亚泗水为例
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-12-28 DOI: 10.21163/gt_2023.181.06
F. Binarti, A. Santoso
{"title":"IDENTIFYING CLIMATE CHANGE VULNERABILITY BASED ON LAND COVER INDICATORS: A CASE STUDY IN SURABAYA, INDONESIA","authors":"F. Binarti, A. Santoso","doi":"10.21163/gt_2023.181.06","DOIUrl":"https://doi.org/10.21163/gt_2023.181.06","url":null,"abstract":"","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44625595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USING DIGITAL TOOLS FOR MONITORING AND ANALYSING SPATIAL VARIATIONS OF POPULATION DISTRIBUTION IN THE CITY OF AL-MADINAH AL-MUNAWARAH, KINGDOM OF SAUDI ARABIA, 2004-2020 使用数字工具监测和分析2004-2020年沙特阿拉伯王国AL-MADINAH AL-MUNAWARAH市人口分布的空间变化
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-12-28 DOI: 10.21163/gt_2023.181.07
Mohamed Ahmed Aly Hassanien
{"title":"USING DIGITAL TOOLS FOR MONITORING AND ANALYSING SPATIAL VARIATIONS OF POPULATION DISTRIBUTION IN THE CITY OF AL-MADINAH AL-MUNAWARAH, KINGDOM OF SAUDI ARABIA, 2004-2020","authors":"Mohamed Ahmed Aly Hassanien","doi":"10.21163/gt_2023.181.07","DOIUrl":"https://doi.org/10.21163/gt_2023.181.07","url":null,"abstract":"","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":"10 15","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41276218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GIS-BASED ANALYTICAL HIERARCHY PROCESS MODELING FOR FLOOD‑PRONE AREA MAPPING IN VIETNAM 基于gis的越南洪水易发地区分析层次过程建模
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-12-22 DOI: 10.21163/gt_2023.181.05
H. Nguyen, G. Șerban
{"title":"GIS-BASED ANALYTICAL HIERARCHY PROCESS MODELING FOR FLOOD‑PRONE AREA MAPPING IN VIETNAM","authors":"H. Nguyen, G. Șerban","doi":"10.21163/gt_2023.181.05","DOIUrl":"https://doi.org/10.21163/gt_2023.181.05","url":null,"abstract":"","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45989588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DROUGHT HAZARD ASSESSMENT USING ANOMALY DROUGHT INDEX AND GEOGRAPHIC INFORMATION SYSTEM IN THE CHI RIVER BASIN, THAILAND 基于异常干旱指数和地理信息系统的泰国赤河流域干旱危险性评价
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-11-22 DOI: 10.21163/gt_2023.181.04
Sarunphas Iamampai, Jirawat Kanasut, Banramee Kantawong, Prem Rangsiwanichpong
{"title":"DROUGHT HAZARD ASSESSMENT USING ANOMALY DROUGHT INDEX AND GEOGRAPHIC INFORMATION SYSTEM IN THE CHI RIVER BASIN, THAILAND","authors":"Sarunphas Iamampai, Jirawat Kanasut, Banramee Kantawong, Prem Rangsiwanichpong","doi":"10.21163/gt_2023.181.04","DOIUrl":"https://doi.org/10.21163/gt_2023.181.04","url":null,"abstract":"","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49059038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THERMAL REGIME OF THE NORTHWESTERN PART OF THE BLACK SEA 黑海西北部的热状态
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-11-04 DOI: 10.21163/gt_2023.181.03
V. Vyshnevskyi, A. Matygin, V. Komorin
{"title":"THERMAL REGIME OF THE NORTHWESTERN PART OF THE BLACK SEA","authors":"V. Vyshnevskyi, A. Matygin, V. Komorin","doi":"10.21163/gt_2023.181.03","DOIUrl":"https://doi.org/10.21163/gt_2023.181.03","url":null,"abstract":"","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41731536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
INVESTIGATION OF SOIL EROSION IN AGRO-TOURISM AREA: GUIDELINE FOR ENVIRONMENTAL CONSERVATION PLANNING 农牧交错带土壤侵蚀调查&环境保护规划指南
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-11-03 DOI: 10.21163/gt_2023.181.02
N. M. Trigunasih, Moh Saifulloh
{"title":"INVESTIGATION OF SOIL EROSION IN AGRO-TOURISM AREA: GUIDELINE FOR ENVIRONMENTAL CONSERVATION PLANNING","authors":"N. M. Trigunasih, Moh Saifulloh","doi":"10.21163/gt_2023.181.02","DOIUrl":"https://doi.org/10.21163/gt_2023.181.02","url":null,"abstract":"","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44216593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
DEVELOPING A FLOOD FORECASTING SYSTEM WITH MACHINE LEARNING AND APPLYING TO GEOGRAPHIC INFORMATION SYSTEM 基于机器学习的洪水预报系统开发及其在地理信息系统中的应用
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-10-27 DOI: 10.21163/gt_2023.181.01
Jirayu Pungching, Sitang Pilailar
: Floods are natural disasters that can damage lives, property, and the economy. Therefore, it is necessary to have a reliable and accurate flood forecasting system to provide early warning in time. Although several Mathematical models have been developed and used to forecast floods continuously for decades, most require up-to-date and specific physical data, including a high experience user, to provide and interpret the result. It is an obstacle for use in remote areas with incomplete information and a lack of specialists. This study, therefore, developed a real-time flood forecasting system with Machine Learning by applying a 2-variable sliding window technique to restructure the data, which can solve the problem of data limitation. Thung Song District Nakhon Si Thammarat Province was selected to test this newly developed model. By importing the water level data of two water level observed stations, SWR025 at the upstream and NKO001 at Thung Song Municipality, into five machine learning algorithms (Linear Regression, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Random Forest) for forecasting the water level every 30 minutes for the next 5 hours. Their performance was compared by the MSE, MAE, and R 2, which ranged from 0.006-0.013, 0.044-0.063, and 0.518-0.750, respectively. The Random Forest was the most efficient algorithm for the 3-hour forecast with an efficiency value of MSE 0.006, MAE 0.044, and R 2 0.75. The developed ML flood forecasting model was validated by the flood data in November 2021 and showed good agreement. Then, the extent of the inundation area was evaluated by the mathematical model. Next, the water depth and surface elevation were transformed and applied to GIS. Finally, the flood risk areas on Google Maps under that specific rainfall are promptly notified to the people three hours before the flood occurs.
:洪水是一种自然灾害,会破坏生命、财产和经济。因此,有必要建立一个可靠、准确的洪水预报系统,以便及时提供预警。尽管几十年来已经开发并使用了几种数学模型来连续预测洪水,但大多数模型都需要最新的特定物理数据,包括经验丰富的用户,来提供和解释结果。它是在信息不完整、缺乏专家的偏远地区使用的障碍。因此,本研究通过应用2变量滑动窗口技术对数据进行重构,开发了一个具有机器学习的实时洪水预报系统,可以解决数据限制的问题。选择了呵叻府通松区来测试这一新开发的模型。通过将上游SWR025和通松市NKO001两个水位观测站的水位数据导入五种机器学习算法(线性回归、支持向量机、K-近邻、决策树和随机森林),预测未来5小时内每30分钟的水位。它们的性能通过MSE、MAE和R2进行比较,其范围分别为0.006-0.013、0.044-0.063和0.518-0.750。随机森林是3小时预测中最有效的算法,有效值分别为MSE 0.006、MAE 0.044和R2 0.75。所开发的ML洪水预测模型通过2021年11月的洪水数据进行了验证,并显示出良好的一致性。然后,通过数学模型对淹没区的范围进行了评价。其次,对水深和地表高程进行了转换,并将其应用于GIS。最后,谷歌地图上特定降雨下的洪水风险区域会在洪水发生前三小时及时通知人们。
{"title":"DEVELOPING A FLOOD FORECASTING SYSTEM WITH MACHINE LEARNING AND APPLYING TO GEOGRAPHIC INFORMATION SYSTEM","authors":"Jirayu Pungching, Sitang Pilailar","doi":"10.21163/gt_2023.181.01","DOIUrl":"https://doi.org/10.21163/gt_2023.181.01","url":null,"abstract":": Floods are natural disasters that can damage lives, property, and the economy. Therefore, it is necessary to have a reliable and accurate flood forecasting system to provide early warning in time. Although several Mathematical models have been developed and used to forecast floods continuously for decades, most require up-to-date and specific physical data, including a high experience user, to provide and interpret the result. It is an obstacle for use in remote areas with incomplete information and a lack of specialists. This study, therefore, developed a real-time flood forecasting system with Machine Learning by applying a 2-variable sliding window technique to restructure the data, which can solve the problem of data limitation. Thung Song District Nakhon Si Thammarat Province was selected to test this newly developed model. By importing the water level data of two water level observed stations, SWR025 at the upstream and NKO001 at Thung Song Municipality, into five machine learning algorithms (Linear Regression, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Random Forest) for forecasting the water level every 30 minutes for the next 5 hours. Their performance was compared by the MSE, MAE, and R 2, which ranged from 0.006-0.013, 0.044-0.063, and 0.518-0.750, respectively. The Random Forest was the most efficient algorithm for the 3-hour forecast with an efficiency value of MSE 0.006, MAE 0.044, and R 2 0.75. The developed ML flood forecasting model was validated by the flood data in November 2021 and showed good agreement. Then, the extent of the inundation area was evaluated by the mathematical model. Next, the water depth and surface elevation were transformed and applied to GIS. Finally, the flood risk areas on Google Maps under that specific rainfall are promptly notified to the people three hours before the flood occurs.","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49032599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CATEGORIZING THE CAUSES OF OCCURRENCE OF CHATEAU BROWNFIELDS: A CASE STUDY ON THE CZECH REPUBLIC 城堡棕地成因的分类&以捷克共和国为例
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-10-27 DOI: 10.21163/gt_2022.172.18
Kamila Turečková
{"title":"CATEGORIZING THE CAUSES OF OCCURRENCE OF CHATEAU BROWNFIELDS: A CASE STUDY ON THE CZECH REPUBLIC","authors":"Kamila Turečková","doi":"10.21163/gt_2022.172.18","DOIUrl":"https://doi.org/10.21163/gt_2022.172.18","url":null,"abstract":"","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42438849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MAPPING OF SUBAK AREA BOUNDARIES AND SOIL FERTILITY FOR AGRICULTURAL LAND CONSERVATION 苏巴克区边界测绘与土壤肥力研究
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-10-18 DOI: 10.21163/gt_2022.172.17
Ida Bagus Putu Bhayunagiri, Moh Saifulloh
{"title":"MAPPING OF SUBAK AREA BOUNDARIES AND SOIL FERTILITY FOR AGRICULTURAL LAND CONSERVATION","authors":"Ida Bagus Putu Bhayunagiri, Moh Saifulloh","doi":"10.21163/gt_2022.172.17","DOIUrl":"https://doi.org/10.21163/gt_2022.172.17","url":null,"abstract":"","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46442148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HEIGHT MEASUREMENT AND OIL PALM YIELD PREDICTION USING UNMANNED AERIAL VEHICLE (UAV) DATA TO CREATE CANOPY HEIGHT MODEL (CHM) 利用无人机数据建立冠层高度模型进行高度测量和油棕产量预测
IF 0.7 Q4 GEOGRAPHY, PHYSICAL Pub Date : 2022-10-17 DOI: 10.21163/gt_2022.172.14
Nayot Kulpanich, Morakot Worachairungreung, K. Waiyasusri, Pornperm Sae-ngow, Dusadee Pinasu
{"title":"HEIGHT MEASUREMENT AND OIL PALM YIELD PREDICTION USING UNMANNED AERIAL VEHICLE (UAV) DATA TO CREATE CANOPY HEIGHT MODEL (CHM)","authors":"Nayot Kulpanich, Morakot Worachairungreung, K. Waiyasusri, Pornperm Sae-ngow, Dusadee Pinasu","doi":"10.21163/gt_2022.172.14","DOIUrl":"https://doi.org/10.21163/gt_2022.172.14","url":null,"abstract":"","PeriodicalId":45100,"journal":{"name":"Geographia Technica","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43097979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Geographia Technica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1