This paper performs a systematic numerical study to investigate the effect of rotation friction ratio on the power extraction performance of a passive rotation H-type vertical axis wind turbine (H-VAWT). In contrast to the previous literature, the present work does not impose rotation velocity on the turbine, and the rotation friction ratio which reflects the effect of external load characteristics on the turbine is introduced to the governing equation of the turbine. During each iteration, the rotation velocity of the turbine is computed after having determined the aerodynamic torque exerted on the blade of the turbine. This is more consistent with the actual working environment of the H-VAWT. A novel numerical coupling model was developed to simulate the interaction between the fluid and the passive rotation of the H-VAWT; then, the power extraction performance of the turbine with different rotation friction ratio was systematically analyzed. The results demonstrate that the power extraction performance of H-VAWT will be enhanced when the H-VAWT has appropriate rotation friction ratio. It is also found that the flow separation induced by large angle of attack is alleviated essentially if the H-VAWT has appropriate rotation friction ratio, which makes the H-VAWT have better energy extraction performance.
{"title":"Effect of Rotation Friction Ratio on the Power Extraction Performance of a Passive Rotation VAWT","authors":"Jianyang Zhu, Chang Tian","doi":"10.1155/2019/6580345","DOIUrl":"https://doi.org/10.1155/2019/6580345","url":null,"abstract":"This paper performs a systematic numerical study to investigate the effect of rotation friction ratio on the power extraction performance of a passive rotation H-type vertical axis wind turbine (H-VAWT). In contrast to the previous literature, the present work does not impose rotation velocity on the turbine, and the rotation friction ratio which reflects the effect of external load characteristics on the turbine is introduced to the governing equation of the turbine. During each iteration, the rotation velocity of the turbine is computed after having determined the aerodynamic torque exerted on the blade of the turbine. This is more consistent with the actual working environment of the H-VAWT. A novel numerical coupling model was developed to simulate the interaction between the fluid and the passive rotation of the H-VAWT; then, the power extraction performance of the turbine with different rotation friction ratio was systematically analyzed. The results demonstrate that the power extraction performance of H-VAWT will be enhanced when the H-VAWT has appropriate rotation friction ratio. It is also found that the flow separation induced by large angle of attack is alleviated essentially if the H-VAWT has appropriate rotation friction ratio, which makes the H-VAWT have better energy extraction performance.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6580345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49346331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Level of utilization of clean energy has grown dramatically in recent years due to increased pollution and environmental issues. For instance, the extra potential energy in water supply system is usually wasted, due to its low capacity. Design of a proper turbine has recently been given more attention by researchers to apply this clean energy. In the present paper, a modified Savonius turbine, suitable for use in a 4-inch pipe, is designed. Turbine with two blades is tested in a laboratory rig and also simulated with the FLUENT software. By matching numerical and laboratory results, simulations are expanded and the blades number effect on turbine performance is studied under determined hydraulic conditions. The flow field around the modified Savonius turbine is interpreted by the 3D streamlines and pressure contours. The obtained results indicate that increasing the turbine blade numbers up to 5 and more causes the turbine efficiency first to rise and then to fall, respectively.
{"title":"Investigation of Blade Number Effect on Hydraulic Performance of In-Pipe Hydro Savonius Turbine","authors":"S. A. Payambarpour, A. Najafi, F. Magagnato","doi":"10.1155/2019/8394191","DOIUrl":"https://doi.org/10.1155/2019/8394191","url":null,"abstract":"Level of utilization of clean energy has grown dramatically in recent years due to increased pollution and environmental issues. For instance, the extra potential energy in water supply system is usually wasted, due to its low capacity. Design of a proper turbine has recently been given more attention by researchers to apply this clean energy. In the present paper, a modified Savonius turbine, suitable for use in a 4-inch pipe, is designed. Turbine with two blades is tested in a laboratory rig and also simulated with the FLUENT software. By matching numerical and laboratory results, simulations are expanded and the blades number effect on turbine performance is studied under determined hydraulic conditions. The flow field around the modified Savonius turbine is interpreted by the 3D streamlines and pressure contours. The obtained results indicate that increasing the turbine blade numbers up to 5 and more causes the turbine efficiency first to rise and then to fall, respectively.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8394191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48527258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to study the influence of torque load on the lubrication and wear of the sliding bearing of the rigid rotor system, the theoretical and experimental researches on the single-span rotor system with low speed were carried out. A special force sensor was used to measure the bearing load under different torque excitations, and the oil film pressure was calculated. The oil film pressure and thickness of sliding bearing under low speed (210r/min) were simulated by combining the lubrication theory. Based on the film thickness ratio theory, the corresponding relationship between the lubrication state and the torque load value was deduced. In addition, the wear rate and abrasive grain morphology of sliding bearing with different torque values were analyzed by means of oil sample preparation to verify this correspondence. The results show that the film thickness ratio has a logarithmic function relationship with the constant torque load, and the film thickness ratio curve can be used to determine the corresponding torque values under different lubrication states. The wear rate under mixed lubrication state increases exponentially with the torque load, and the main wear mechanism is adhesive wear and abrasive wear. The research results have certain guiding significance to the adjustment of the actual running condition of sliding bearing and its life prediction.
{"title":"Investigation on Lubrication State of Sliding Bearings in Low-Speed Rotor System Subjected to Torque Load","authors":"Xinyu Pang, W. Jiang, Xiaowu Jin","doi":"10.1155/2019/1791830","DOIUrl":"https://doi.org/10.1155/2019/1791830","url":null,"abstract":"In order to study the influence of torque load on the lubrication and wear of the sliding bearing of the rigid rotor system, the theoretical and experimental researches on the single-span rotor system with low speed were carried out. A special force sensor was used to measure the bearing load under different torque excitations, and the oil film pressure was calculated. The oil film pressure and thickness of sliding bearing under low speed (210r/min) were simulated by combining the lubrication theory. Based on the film thickness ratio theory, the corresponding relationship between the lubrication state and the torque load value was deduced. In addition, the wear rate and abrasive grain morphology of sliding bearing with different torque values were analyzed by means of oil sample preparation to verify this correspondence. The results show that the film thickness ratio has a logarithmic function relationship with the constant torque load, and the film thickness ratio curve can be used to determine the corresponding torque values under different lubrication states. The wear rate under mixed lubrication state increases exponentially with the torque load, and the main wear mechanism is adhesive wear and abrasive wear. The research results have certain guiding significance to the adjustment of the actual running condition of sliding bearing and its life prediction.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/1791830","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48764747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-27DOI: 10.5772/INTECHOPEN.85877
Akanksha Singh
In this chapter, a new topology for Direct-Drive Wind Turbines (DDWTs) with a low-voltage generator design is presented in order to eliminate the required dc-bus capacitors or dc-link inductors. In the presented topology, the grid-side converter is replaced by a boost Current Source Inverter (CSI) therefore removing the need for the dc-bus electrolytic capacitors which results in increasing the system lifetime. In the developed topology, the synchronous inductance of the generator is utilized. This facilitates the elimination of the intrinsically required dc-link inductor in the CSI which further contributes to a reduction in the overall system weight and size. The boost CSI is capable of converting a low dc voltage to a higher line-to-line voltage. This results in the implementation of a low-voltage generator for DDWTs. The feasibility of the presented low-voltage generator is investigated through Finite Element (FE) computations. In this chapter, a modified 1.5 MW low-voltage generator for the proposed topology is compared with an existing 1.5 MW Permanent Magnet (PM) synchronous generator for DDWTs. The feasibility of the presented topology of generator-converter for DDWTs is verified through simulations and laboratory tests. Furthermore, the controls developed for the developed wind turbine topology is also presented in this chapter.
{"title":"Development and Control of Generator-Converter Topology for Direct-Drive Wind Turbines","authors":"Akanksha Singh","doi":"10.5772/INTECHOPEN.85877","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.85877","url":null,"abstract":"In this chapter, a new topology for Direct-Drive Wind Turbines (DDWTs) with a low-voltage generator design is presented in order to eliminate the required dc-bus capacitors or dc-link inductors. In the presented topology, the grid-side converter is replaced by a boost Current Source Inverter (CSI) therefore removing the need for the dc-bus electrolytic capacitors which results in increasing the system lifetime. In the developed topology, the synchronous inductance of the generator is utilized. This facilitates the elimination of the intrinsically required dc-link inductor in the CSI which further contributes to a reduction in the overall system weight and size. The boost CSI is capable of converting a low dc voltage to a higher line-to-line voltage. This results in the implementation of a low-voltage generator for DDWTs. The feasibility of the presented low-voltage generator is investigated through Finite Element (FE) computations. In this chapter, a modified 1.5 MW low-voltage generator for the proposed topology is compared with an existing 1.5 MW Permanent Magnet (PM) synchronous generator for DDWTs. The feasibility of the presented topology of generator-converter for DDWTs is verified through simulations and laboratory tests. Furthermore, the controls developed for the developed wind turbine topology is also presented in this chapter.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"47 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76838823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Twin scroll radial turbines are increasingly used for turbocharging applications, to take advantage of the pulsating exhaust gases. In spite of its relevance in turbocharging techniques, scientific literature about CFD applied to twin scroll turbines is limited, especially in case of partial admission. In the present paper a CFD complete model of a twin scroll radial turbine is developed in order to give a contribution to literature in understanding the capabilities of current industrial CFD approaches applied to these difficult cases and to develop performance index that can be used for turbine design optimization purposes. The flow solution is obtained by means of ANSYS CFX ® in a wide range of operating conditions in full and partial admission cases. The total-to-static efficiency and the mass flow parameter (MFP) have been calculated and compared with the experimental database in order to validate the numerical model. The purpose of the developed procedure is also to generate a database for twin scroll turbines useful for future applications. A comparison between performances obtained in different admission conditions was performed. In particular the analysis focused on the characterization of the flow at volute outlet/rotor inlet section. A flow distortion index at rotor inlet was introduced to correlate the turbine performance and the flow nonuniformities generated by the volute. Finally the influence of the backside cavity on the performance parameters is also discussed. The introduction of these new nonuniformity indices is proposed for volute design and optimization procedures.
{"title":"Numerical Simulation of the Performance of a Twin Scroll Radial Turbine at Different Operating Conditions","authors":"C. Cravero, D. De Domenico, A. Ottonello","doi":"10.1155/2019/5302145","DOIUrl":"https://doi.org/10.1155/2019/5302145","url":null,"abstract":"Twin scroll radial turbines are increasingly used for turbocharging applications, to take advantage of the pulsating exhaust gases. In spite of its relevance in turbocharging techniques, scientific literature about CFD applied to twin scroll turbines is limited, especially in case of partial admission. In the present paper a CFD complete model of a twin scroll radial turbine is developed in order to give a contribution to literature in understanding the capabilities of current industrial CFD approaches applied to these difficult cases and to develop performance index that can be used for turbine design optimization purposes. The flow solution is obtained by means of ANSYS CFX ® in a wide range of operating conditions in full and partial admission cases. The total-to-static efficiency and the mass flow parameter (MFP) have been calculated and compared with the experimental database in order to validate the numerical model. The purpose of the developed procedure is also to generate a database for twin scroll turbines useful for future applications. A comparison between performances obtained in different admission conditions was performed. In particular the analysis focused on the characterization of the flow at volute outlet/rotor inlet section. A flow distortion index at rotor inlet was introduced to correlate the turbine performance and the flow nonuniformities generated by the volute. Finally the influence of the backside cavity on the performance parameters is also discussed. The introduction of these new nonuniformity indices is proposed for volute design and optimization procedures.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/5302145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47094966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To investigate the aerodynamic excitations in variable geometry turbines, the full three-dimensional viscous unsteady numerical simulations were performed by solving N-S equations based on SAS SST method. The aerodynamic excitations at varied expansion ratios with six different vane stagger angles that cause the unsteady pressure fluctuation on the rotor blade surface are phenomenologically identified and quantitatively analyzed. The blade pressure fluctuation levels for turbines with different vane stagger angles in the time and frequency domain are analyzed. As the results suggest, the blade excitation mechanisms are directly dependent on the operating conditions of the stage in terms of vane exit Mach numbers for all test cases. At subsonic vane exit Mach numbers the blade pressure fluctuations are simply related to the potential filed and wake propagation; at transonic conditions, the vane trailing edge shock causes additional disturbance and is the dominating excitation source on the rotor blade, and the pressure fluctuation level is three times of the subsonic conditions. The pressure fluctuation energy at subsonic condition concentrates on the first vane passing period; pressure fluctuation energy at higher harmonics is more prominent at transonic conditions. The variation of the aerodynamic excitations on the rotor blade at different vane stagger angles is caused by the varied expansion with stator and rotor passage. The aerodynamic excitation behaviors on the rotor blade surface for the VGT are significantly different at varied vane stagger angle. Spanwise variation of the pressure fluctuation patterns on is also observed, and the mechanism of the excitations at different spans is not uniform.
{"title":"Investigation of Unsteady Aerodynamic Excitation on Rotor Blade of Variable Geometry Turbine","authors":"Jian Liu, W. Qiao, Wenhua Duan","doi":"10.1155/2019/4396546","DOIUrl":"https://doi.org/10.1155/2019/4396546","url":null,"abstract":"To investigate the aerodynamic excitations in variable geometry turbines, the full three-dimensional viscous unsteady numerical simulations were performed by solving N-S equations based on SAS SST method. The aerodynamic excitations at varied expansion ratios with six different vane stagger angles that cause the unsteady pressure fluctuation on the rotor blade surface are phenomenologically identified and quantitatively analyzed. The blade pressure fluctuation levels for turbines with different vane stagger angles in the time and frequency domain are analyzed. As the results suggest, the blade excitation mechanisms are directly dependent on the operating conditions of the stage in terms of vane exit Mach numbers for all test cases. At subsonic vane exit Mach numbers the blade pressure fluctuations are simply related to the potential filed and wake propagation; at transonic conditions, the vane trailing edge shock causes additional disturbance and is the dominating excitation source on the rotor blade, and the pressure fluctuation level is three times of the subsonic conditions. The pressure fluctuation energy at subsonic condition concentrates on the first vane passing period; pressure fluctuation energy at higher harmonics is more prominent at transonic conditions. The variation of the aerodynamic excitations on the rotor blade at different vane stagger angles is caused by the varied expansion with stator and rotor passage. The aerodynamic excitation behaviors on the rotor blade surface for the VGT are significantly different at varied vane stagger angle. Spanwise variation of the pressure fluctuation patterns on is also observed, and the mechanism of the excitations at different spans is not uniform.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/4396546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48898128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brett Dewar, Jonna Tiainen, Ahti Jaatinen-Värri, Mike Creamer, M. Dotcheva, J. Radulovic, J. Buick
This paper compares experimental static pressure measurement with CFD simulation in a centrifugal compressor at 12 points through the diffuser. Three mass flow rates are selected, each for three operating speeds giving nine total operating conditions. The results show that the CFD model generally slightly underpredicts the static pressure value as compared to the experimental results. The discrepancy between experimental and numerical results ranges between -8% and +6% and is fairly consistent for a given operating condition, except for close to the blade trailing edge where the pressure variation is less regular and where the pressure is increasing most rapidly with radial position. In the consistent region, where the pressure gradient is low, the discrepancy is around two percent or less for simulations close to the design operating point. Away from the design operating point the errors increase up to approximately 5%. The simulation results were also used to investigate the effect of the position (from the blade trailing edge) of the impeller-diffuser interface (a characteristic of the frozen rotor simulation approach). Here an optimal position for the interface was found to be 2% of the blade radius. This value gave improved agreement with the experimental result in the initial region of the diffuser up to a distance of approximately 10% of the radius. At greater distances the position of the interface became less important. The results also highlighted a change in the pressure along the spanwise direction close to the tips. A dip in the pressure, which was observed in the experimental results, was only observed in the simulations close to the shroud. Close to the hub the simulation results recorded a small local peak. The simulation approach was then applied to further study the flow characteristics by examining the full-field velocity and pressure contours in the impeller and diffuser regions to identify changes due to the different operating conditions.
{"title":"CFD Modelling of a Centrifugal Compressor with Experimental Validation through Radial Diffuser Static Pressure Measurement","authors":"Brett Dewar, Jonna Tiainen, Ahti Jaatinen-Värri, Mike Creamer, M. Dotcheva, J. Radulovic, J. Buick","doi":"10.1155/2019/7415263","DOIUrl":"https://doi.org/10.1155/2019/7415263","url":null,"abstract":"This paper compares experimental static pressure measurement with CFD simulation in a centrifugal compressor at 12 points through the diffuser. Three mass flow rates are selected, each for three operating speeds giving nine total operating conditions. The results show that the CFD model generally slightly underpredicts the static pressure value as compared to the experimental results. The discrepancy between experimental and numerical results ranges between -8% and +6% and is fairly consistent for a given operating condition, except for close to the blade trailing edge where the pressure variation is less regular and where the pressure is increasing most rapidly with radial position. In the consistent region, where the pressure gradient is low, the discrepancy is around two percent or less for simulations close to the design operating point. Away from the design operating point the errors increase up to approximately 5%. The simulation results were also used to investigate the effect of the position (from the blade trailing edge) of the impeller-diffuser interface (a characteristic of the frozen rotor simulation approach). Here an optimal position for the interface was found to be 2% of the blade radius. This value gave improved agreement with the experimental result in the initial region of the diffuser up to a distance of approximately 10% of the radius. At greater distances the position of the interface became less important. The results also highlighted a change in the pressure along the spanwise direction close to the tips. A dip in the pressure, which was observed in the experimental results, was only observed in the simulations close to the shroud. Close to the hub the simulation results recorded a small local peak. The simulation approach was then applied to further study the flow characteristics by examining the full-field velocity and pressure contours in the impeller and diffuser regions to identify changes due to the different operating conditions.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7415263","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43961294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To more efficiently design high performance vehicular permanent magnet motor, an electromagnetic-thermal integration design method is presented, which considers both the electromagnetic properties and the temperature rise of motor winding when determining the main dimensional parameters of the motor. Then a 48-slot and 8-pole vehicular permanent magnet motor is designed with this method. The thermomagnetic coupling design is simulated and validated on the basis of multiphysical domain on finite element analysis. Then the prototype is analyzed and tested on a newly built motor experiment platform. It is shown that the simulation results and experimental results are consistent, which validate the accuracy and effectiveness of the new design method. Also this method is proved to well improve the efficiency of permanent magnet motor design.
{"title":"Electromagnetic-Thermal Integration Design of Permanent Magnet Motor for Vehicles","authors":"Shijun Chen, Qi Zhang, Surong Huang","doi":"10.1155/2019/9653231","DOIUrl":"https://doi.org/10.1155/2019/9653231","url":null,"abstract":"To more efficiently design high performance vehicular permanent magnet motor, an electromagnetic-thermal integration design method is presented, which considers both the electromagnetic properties and the temperature rise of motor winding when determining the main dimensional parameters of the motor. Then a 48-slot and 8-pole vehicular permanent magnet motor is designed with this method. The thermomagnetic coupling design is simulated and validated on the basis of multiphysical domain on finite element analysis. Then the prototype is analyzed and tested on a newly built motor experiment platform. It is shown that the simulation results and experimental results are consistent, which validate the accuracy and effectiveness of the new design method. Also this method is proved to well improve the efficiency of permanent magnet motor design.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/9653231","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42968510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Li, Chang Zhao, Chunming Qu, Shouyang Zhao, F. Feng, K. Tagawa
In order to improve the aerodynamic characteristics of the Straight-bladed Vertical Axis Wind Turbine (SB-VAWT), a rotor structure with auxiliary blade installed behind the main blade was proposed in this study. To investigate the effects of relative thickness and the fixing angle of the auxiliary blade on aerodynamic characteristics of SB-VAWT, numerical simulations were carried out. Two shapes of NACA 4-digital series blade-section, NACA0018 and NACA0024, were selected as the main blades in this work. Effects of relative thickness and fixing angles of auxiliary blade on the aerodynamic performance of SB-VAWT had been analyzed in detail, which had 5 kinds of relative thickness and 3 kinds of fixing angles combined into 13 working conditions. And the main blades and the auxiliary blades were also decided as the NACA series airfoil with five kinds of relative thickness. Three kinds of fixing angle of auxiliary blade installed behind main blade were used including 0°, 5°, and 10°. The simulations included the output power coefficients, the static torque coefficients, and the flow fields around the main blade and auxiliary blade for both the dynamic and static conditions at some typical azimuth angles. The results show that the auxiliary blade with certain relative thickness and fixing angle can improve the output power characteristics and static torque characteristics of SB-VAWT, which can also provide research reference for improving the performance of VAWT.
{"title":"Effect of Auxiliary Blade on Aerodynamic Characteristics of Vertical Axis Wind Turbine by Numerical Simulation","authors":"Yan Li, Chang Zhao, Chunming Qu, Shouyang Zhao, F. Feng, K. Tagawa","doi":"10.1155/2019/8098160","DOIUrl":"https://doi.org/10.1155/2019/8098160","url":null,"abstract":"In order to improve the aerodynamic characteristics of the Straight-bladed Vertical Axis Wind Turbine (SB-VAWT), a rotor structure with auxiliary blade installed behind the main blade was proposed in this study. To investigate the effects of relative thickness and the fixing angle of the auxiliary blade on aerodynamic characteristics of SB-VAWT, numerical simulations were carried out. Two shapes of NACA 4-digital series blade-section, NACA0018 and NACA0024, were selected as the main blades in this work. Effects of relative thickness and fixing angles of auxiliary blade on the aerodynamic performance of SB-VAWT had been analyzed in detail, which had 5 kinds of relative thickness and 3 kinds of fixing angles combined into 13 working conditions. And the main blades and the auxiliary blades were also decided as the NACA series airfoil with five kinds of relative thickness. Three kinds of fixing angle of auxiliary blade installed behind main blade were used including 0°, 5°, and 10°. The simulations included the output power coefficients, the static torque coefficients, and the flow fields around the main blade and auxiliary blade for both the dynamic and static conditions at some typical azimuth angles. The results show that the auxiliary blade with certain relative thickness and fixing angle can improve the output power characteristics and static torque characteristics of SB-VAWT, which can also provide research reference for improving the performance of VAWT.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/8098160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42974583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Effect of dynamic backlash and rotational speed is investigated on the six-degree-of-freedom model of the gear-bearing system with the time-varying meshing stiffness. The relationship between dynamic backlash and center distance can be defined clearly. The nonlinear differential equations of the model are solved by the Newmark-β method. The results show that system amplitude increases in the wake of increasing rotational speed. After reaching a certain rotational speed, the system jumps from periodic motion to chaos motion, and the effective amplitude is changed violently. Comparing the dynamic backlash with fixed backlash, the amplitude of the dynamic backlash is augmented and the frequency components are diversified. The vibration displacement is enlarged by the dynamic backlash and the chaotic behavior of the system becomes complex with increasing rotational speed. The numerical results provide a useful reference source for engineers to select rotational speed section for steady running.
{"title":"Dynamic Characteristics of Spur Gear Pair with Dynamic Center Distance and Backlash","authors":"Jie Liu, Shenghua Liu, Weiqiang Zhao, Lei Zhang","doi":"10.1155/2019/2040637","DOIUrl":"https://doi.org/10.1155/2019/2040637","url":null,"abstract":"Effect of dynamic backlash and rotational speed is investigated on the six-degree-of-freedom model of the gear-bearing system with the time-varying meshing stiffness. The relationship between dynamic backlash and center distance can be defined clearly. The nonlinear differential equations of the model are solved by the Newmark-β method. The results show that system amplitude increases in the wake of increasing rotational speed. After reaching a certain rotational speed, the system jumps from periodic motion to chaos motion, and the effective amplitude is changed violently. Comparing the dynamic backlash with fixed backlash, the amplitude of the dynamic backlash is augmented and the frequency components are diversified. The vibration displacement is enlarged by the dynamic backlash and the chaotic behavior of the system becomes complex with increasing rotational speed. The numerical results provide a useful reference source for engineers to select rotational speed section for steady running.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/2040637","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46772016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}