Background and objectives: The ideal type of sedation for endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is not known. Two previous studies comparing the diagnostic yield between moderate sedation (MS) and deep sedation/general anesthesia (DS/GA) had provided conflicting results with one study clearly favoring the latter. No study had addressed cost. This is concerning for pulmonologists without routine access to anesthesia services. Our objective was to assess the impact of MS and Monitored Anesthesia Care (sedation administered and monitored by an anesthesiologist) on the outcomes and cost of EBUS-TBNA.
Materials and methods: We performed a retrospective review of prospectively collected data on consecutive EBUS-TBNA performed under two different types of sedation in a single academic center. A diagnostic TBNA was defined as an aspirate yielding any specific diagnosis or if subsequent surgery or follow-up of nondiagnostic/normal aspirates showed no pathology. Current Medicare time-based allowances were used for professional charges calculation.
Results: There was no difference observed between MS and MAC in regards of the diagnostic yield (92.9% versus 91.9%), procedure duration, number, location, and size of lymph node (LN) sampled, but there were more passes per LN with MAC. The average charges were 74.30 USD for MS and 319.91 for MAC. There were more hypotensive and desaturations episodes with MAC but none required escalation of care.
Conclusions: When performed under MS, EBUS-TBNA has similar diagnostic yield as under MAC but may be associated with less side effects. The difference in sedation cost is modest; however, an additional 245$ for each EBUS done under MAC would have significant cost implications on the health system. These findings are of critical importance for bronchoscopists without routine access to anesthesia services and for optimization of healthcare cost and resource utilization.
Purpose: Healthy patients with unilateral diaphragm paralysis (UDP) are often asymptomatic; those with UDP and comorbidities that increase work of breathing are often dyspneic. We report the effect of obesity on exercise capacity in UDP patients.
Methods: All obese and nonobese patients with UDP undergoing cardiopulmonary exercise testing (CPET) during a 32-month period in the exercise laboratory of an academic hospital were compared to a retrospectively identified cohort of obese and nonobese controls without UDP, matched for key features. CPET used a modified Bruce treadmill protocol with breath-to-breath expired gas analysis. O2 uptake, minute ventilation, exercise time, and work rate were recorded at peak exercise. Static pulmonary functions were measured. Kruskal-Wallis, Wilcoxon rank sum, and Fisher's exact tests were used to compare continuous and categorical variables, respectively. Stratified linear regression was used to quantify the effect of UDP and obesity on CPET variables.
Results: Twenty-two UDP patients and 46 controls were studied. The BMI of obese and nonobese patients was 33.0±4.2 and 25.8±2.4 kg/m2, respectively. UDP subjects with obesity, compared to controls with neither condition, showed significantly reduced peak O2 uptake normalized to actual body weight (1.57±0.64 versus 2.01±0.88 L/min), shorter exercise time (5.7±2.0 versus 8.5±2.9 minutes), and lower peak ventilation. This was not observed in UDP alone or obesity alone. Peak work rate trended lower in the combined UDP-obesity group.
Conclusion: Neither UDP nor obesity alone significantly reduced exercise capacity. Superimposed UDP and obesity interact to create a ventilatory limitation to exercise, with reduced peak-VO2, exercise time, and work rate.
Background: Prolonged laboratory diagnostic process of tuberculosis can lead to failure to complete the diagnosis and increase dropout rate of smear positive pulmonary tuberculosis (PTB) cases. This implies such dropout patients without completing diagnosis are critical as infected individuals remain untreated in the community, providing more opportunities for transmission of the disease and adversely affecting the epidemic. The aim of this research is to determine the level of smear positive PTB diagnosis dropout rate of spot-morning-spot sputum microscopy diagnosis method in public health facilities, in Addis Ababa, Ethiopia.
Methods: Retrospective review of patient documents in 13 public health facilities' TB laboratory in Addis Ababa was conducted from October 2011 to March 2016. Data was computerized using Epi-info software and analysed using SPSS version 20.0 software. Descriptive numerical summaries were used to present the findings. Association between the dropout rate and demographic variables was assessed by Chi-square (X2). Bivariate model using Odds Ratio (OR) with a 95% Confidence Interval (CI) was calculated. P-Value less than 0.05 was taken as statistically significant.
Results: Of 41,884 presumptive TB patients registered during the 53 months for laboratory investigation, 5.9% were positive for the first spot sputum smear microscopy. Among these positive cases, 142 (5.8%) and 298 (12.1%) did not come back to the laboratory to submitted early morning and second spot sputum specimens, respectively. The diagnostic dropout for morning sputum specimen in hospitals was 5.6% (58/1039) and in health centres was 5.9% (84/1424). However, higher proportion of dropout for second spot sputum specimen in hospitals was 16.4% (170/1039), compared to the health centres, 8.9% (128/1424). Diagnostic dropout of sputum smear microscopy had no significant association with sociodemographic variable (P value >0.05), while it had significant association with facility type (P value <0.05).
Conclusion: In this study smear positive pulmonary tuberculosis diagnostic dropout rate was high compared to WHO reported for the new strategy shift implying the importance of shifting to same-day approach. Hence, shifting from conventional to same day is crucial to minimize the TB diagnostic dropout rate in the study area and other similar settings. Further research is needed/recommended in the local setting to compare the yield and dropout rates between same-day and conventional sputum smear microscopy approach.
Background. The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and acute lung damage is well known. However, the mechanism involved in the effects of repeated exposures of PM in the lung injury is poorly documented. This study tested the hypotheses that chronic nasal instillation of residual oil fly ash (ROFA) induced not only distal lung and airway inflammation but also remodeling. In addition, we evaluated the effects of inducible nitric oxide inhibition in these responses. For this purpose, airway and lung parenchyma were evaluated by quantitative analysis of collagen and elastic fibers, immunohistochemistry for macrophages, neutrophils, inducible nitric oxide synthase (iNOS), neuronal nitric oxide synthase (nNOS), and alveolar septa 8-iso prostaglandin F2α (8-iso-PGF-2α) detection. Anesthetized in vivo (airway resistance, elastance, H, G, and Raw) respiratory mechanics were also analyzed. C57BL6 mice received daily 60ul of ROFA (intranasal) for five (ROFA-5d) or fifteen days (ROFA-15d). Controls have received saline (SAL). Part of the animals has received 1400W (SAL+1400W and ROFA-15d+1400W), an iNOS inhibitor, for four days before the end of the protocol. A marked neutrophil and macrophage infiltration and an increase in the iNOS, nNOS, and 8-iso-PGF2 α expression was observed in peribronchiolar and alveolar wall both in ROFA-5d and in ROFA-15d groups. There was an increment of the collagen and elastic fibers in alveolar and airway walls in ROFA-15d group. The iNOS inhibition reduced all alterations induced by ROFA, except for the 8-iso-PGF2 α expression. In conclusion, repeated particulate matter exposures induce extracellular matrix remodeling of airway and alveolar walls, which could contribute to the pulmonary mechanical changes observed. The mechanism involved is, at least, dependent on the inducible nitric oxide activation.
Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare form of vasculitis disorder which involves multiple organ systems and is characterized by asthma, pulmonary infiltrates, sinusitis, neuropathy, and peripheral eosinophilia. It also has an effect on the heart, skin, kidneys, and gastrointestinal tract. Interlukin-5 (IL-5) is involved in maturation and activation of eosinophil, the production of which is increased in the EGPA. Treatments of EGPA are limited to systemic corticosteroids and immunomodulators. These drugs are associated with significant side effects. Besides this, the response of patients to these drugs may be disappointing. Frequent relapses, the need for long-term medium-to-high-dose glucocorticoid therapy, and failure to achieve remission are not uncommon findings. There is a need for noble agents that could reduce frequent relapses and the dose of systemic glucocorticoids and maintain a sustained remission without significant side effects. Mepolizumab is IL-5 antagonist and may have value in treating patients with EGPA. Therefore, we did a systematic review to evaluate the efficacy and safety of mepolizumab in patients with EGPA.
Aim: To evaluate the conditioning capabilities of the DAR™ Hygrobac™ S, a Heat and Moisture Exchanger (HME), using a new device to measure the temperature (T) and the absolute humidity (AH) of the ventilated gases in vivo during mechanical ventilation in Intensive Care Unit (ICU) patients.
Materials and methods: In 49 mechanically ventilated ICU patients, we evaluated T and AH, indicating the HME efficacy, during the inspiratory phase upstream and downstream the HME and the ratio of inspired AH to expired AH and the difference between expired T and inspired T indicated the HME efficiency. Efficacy and efficiency were assessed at three time points: at baseline (t0, HME positioning time), at 12 hours (t1), and at 24 hours (t2) using a dedicated, ad hoc built wireless device. Differences over time were evaluated using one-way ANOVA for repeated measures, whereas differences between in vivo and laboratory values (declared by the manufacturer according to UNI® EN ISO 9360 international standard) were evaluated using one-sample Student t-test.
Results: 49 HMEs were analysed in vivo during mechanical ventilation. T and AH means (SD) of the inspired gas (the efficacy) were 31.5°C (1.54) and 32.3 mg/l (2.60) at t0, 31.1°C (1.34) and 31.7 mg/l (2.26) at t1, and 31°C (1.29) and 31.4 mg/l (2.27) at t2. Both efficiency parameters were constant over time (inspired AH/expired AH=89%, p=0.24; and expired T-inspired T = 2.2°C, p=0.81). Compared with laboratory values, in vivo T and AH indicating efficacy were significantly lower (p<0.01), whereas the efficiency was significantly higher (p<0.01).
Conclusions: HME performances can be accurately assessed for prolonged periods in vivo during routine mechanical ventilation in ICU patients. Temperature and absolute humidity of ventilated gases in vivo were maintained within the expected range and remained stable over time. HME efficacy and efficiency in vivo significantly differed from laboratory values.
Background: A definitive diagnosis of malignant pleural effusion (MPE) is reached by cytological or histological assessment, but thorough analysis of the ultrasound features of the effusion as well as pleural thickening or nodularity can also be of significant diagnostic help.
Objective: To assess the relationship of specific ultrasound characterisctics and macroscopic features of confirmed malignant pleural effusion, thus increasing the diagnostic potential of thoracic ultrasound.
Methods: The findings of thoracic ultrasonography performed prior to initial thoracentesis in 104 patients with subsequently confirmed malignant pleural effusion were analyzed with regard to the macroscopic features of the pleural effusion.
Results: Distribution in terms of frequency of hemorrhagic/sanguinolent (n=64) in relation to nonhemorrhagic transparent/opaque (n=40) MPE, regardless of their ultrasound characteristics, did not yield a statistically significant correlation (p=0.159). Conversely, the frequency distribution of hemorrhagic pleural effusions (n=8) in relation to nonhemorrhagic effusions (n=1), in the group of septated MPE, showed a statistically significant difference (p<0.001). The least number of patients (0.96%) had a complex septated MPE combined with the macroscopic appearance of a serous/transparent nonhemorrhagic effusion, which suggests that this combination is a sporadic occurrence and may have a diagnostic significance for this patient group.
Conclusion: The incidence of specific combinations of the ultrasound characteristics and macroscopic appearance of MPEs showed different frequency distributions, which may improve the diagnostic value of thoracic ultrasound in this patient population.
Background: Since nontuberculous mycobacterial pulmonary disease (NTM-PD) is a condition with increasing morbidity, a more detailed knowledge of radiological aspects and pulmonary function plays a relevant role in the diagnosis and appropriate therapeutic management of these patients.
Objectives: The purpose of this study was to evaluate changes in lung parenchyma through computed tomography (CT) densitometry and, secondarily, to analyze its correlation with pulmonary function testing (PFT) in patients with NTM-PD.
Methods: This is a cross-sectional study in which 31 patients with NTM-PD and 27 controls matched by sex, age, and body mass index underwent CT pulmonary densitovolumetry and pulmonary function tests including spirometry and body plethysmograph.
Results: Based on the total lung volume (TLV) and total lung mass (TLM) measurements, the cumulative mass ratios were calculated for 3% (M3), 15% (M15), 85% (M85), and 97% (M97) of the TLV. We also calculated the complement, which is represented by TLM (100%) minus the mass of 15% (C85) or 3% (C97) of the TLV. Patients with NTM-PD presented lower values of M3 and M15 than controls, with greater significant differences in the apical third and middle third measurements. Compared to controls, patients with NTM-PD showed higher values of C85 and C97, although significant differences were observed only in the basal third measurements. There were negative correlations of total lung capacity with M3 and M15 in the middle third and apical third measurements. There were positive correlations of residual volume and airway resistance with M3 at the apical third measurement.
Conclusions: Patients with NTM-PD show reduced lung mass and increased lung mass in the apical and basal regions of the lungs, respectively. Furthermore, there is a relationship between lung mass measurements and pulmonary function parameters.