首页 > 最新文献

Optica Quantum最新文献

英文 中文
Excitation of 87Rb Rydberg atoms to nS and nD states (n≤68) via an optical nanofiber 通过纳米光纤激发87Rb里德伯原子到n≤68的nS和nD态
Pub Date : 2023-09-28 DOI: 10.1364/opticaq.1.000006
Alexey Vylegzhanin, Dylan J. Brown, Aswathy Raj, Danil F. Kornovan, Jesse L. Everett, Etienne Brion, Jacques Robert, Síle Nic Chormaic
Cold Rydberg atoms are a promising platform for quantum technologies, and combining them with optical waveguides has the potential to create robust quantum information devices. Here, we experimentally observe the excitation of cold rubidium atoms to a large range of Rydberg S and D states through interaction with the evanescent field of an optical nanofiber. We develop a theoretical model to account for experimental phenomena present such as the AC Stark shifts and the Casimir–Polder interaction. This work strengthens the knowledge of Rydberg atom interactions with optical nanofibers and is a critical step toward the implementation of all-fiber quantum networks and waveguide quantum electrodynamics (QED) systems using highly excited atoms.
冷里德伯原子是量子技术的一个很有前途的平台,将它们与光波导结合起来有可能创造出强大的量子信息设备。在这里,我们通过实验观察了冷铷原子通过与光学纳米纤维的倏逝场相互作用激发到大范围的里德堡S和D态。我们开发了一个理论模型来解释目前的实验现象,如AC斯塔克位移和卡西米尔-波尔德相互作用。这项工作加强了对里德伯原子与光学纳米纤维相互作用的认识,是实现全光纤量子网络和使用高激发原子的波导量子电动力学(QED)系统的关键一步。
{"title":"Excitation of <sup>87</sup>Rb Rydberg atoms to nS and nD states (n≤68) via an optical nanofiber","authors":"Alexey Vylegzhanin, Dylan J. Brown, Aswathy Raj, Danil F. Kornovan, Jesse L. Everett, Etienne Brion, Jacques Robert, Síle Nic Chormaic","doi":"10.1364/opticaq.1.000006","DOIUrl":"https://doi.org/10.1364/opticaq.1.000006","url":null,"abstract":"Cold Rydberg atoms are a promising platform for quantum technologies, and combining them with optical waveguides has the potential to create robust quantum information devices. Here, we experimentally observe the excitation of cold rubidium atoms to a large range of Rydberg S and D states through interaction with the evanescent field of an optical nanofiber. We develop a theoretical model to account for experimental phenomena present such as the AC Stark shifts and the Casimir–Polder interaction. This work strengthens the knowledge of Rydberg atom interactions with optical nanofibers and is a critical step toward the implementation of all-fiber quantum networks and waveguide quantum electrodynamics (QED) systems using highly excited atoms.","PeriodicalId":471592,"journal":{"name":"Optica Quantum","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135385230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Excitation of 87Rb Rydberg atoms to nS and nD states (n≤68) via an optical nanofiber 通过纳米光纤激发87Rb里德伯原子到n≤68的nS和nD态
Pub Date : 2023-09-28 DOI: 10.1364/opticaq.498414
Alexey Vylegzhanin, Dylan J. Brown, Aswathy Raj, Danil F. Kornovan, Jesse L. Everett, Etienne Brion, Jacques Robert, Síle Nic Chormaic
Cold Rydberg atoms are a promising platform for quantum technologies, and combining them with optical waveguides has the potential to create robust quantum information devices. Here, we experimentally observe the excitation of cold rubidium atoms to a large range of Rydberg S and D states through interaction with the evanescent field of an optical nanofiber. We develop a theoretical model to account for experimental phenomena present such as the AC Stark shifts and the Casimir–Polder interaction. This work strengthens the knowledge of Rydberg atom interactions with optical nanofibers and is a critical step toward the implementation of all-fiber quantum networks and waveguide quantum electrodynamics (QED) systems using highly excited atoms.
冷里德伯原子是量子技术的一个很有前途的平台,将它们与光波导结合起来有可能创造出强大的量子信息设备。在这里,我们通过实验观察了冷铷原子通过与光学纳米纤维的倏逝场相互作用激发到大范围的里德堡S和D态。我们开发了一个理论模型来解释目前的实验现象,如AC斯塔克位移和卡西米尔-波尔德相互作用。这项工作加强了对里德伯原子与光学纳米纤维相互作用的认识,是实现全光纤量子网络和使用高激发原子的波导量子电动力学(QED)系统的关键一步。
{"title":"Excitation of <sup>87</sup>Rb Rydberg atoms to nS and nD states (n≤68) via an optical nanofiber","authors":"Alexey Vylegzhanin, Dylan J. Brown, Aswathy Raj, Danil F. Kornovan, Jesse L. Everett, Etienne Brion, Jacques Robert, Síle Nic Chormaic","doi":"10.1364/opticaq.498414","DOIUrl":"https://doi.org/10.1364/opticaq.498414","url":null,"abstract":"Cold Rydberg atoms are a promising platform for quantum technologies, and combining them with optical waveguides has the potential to create robust quantum information devices. Here, we experimentally observe the excitation of cold rubidium atoms to a large range of Rydberg S and D states through interaction with the evanescent field of an optical nanofiber. We develop a theoretical model to account for experimental phenomena present such as the AC Stark shifts and the Casimir–Polder interaction. This work strengthens the knowledge of Rydberg atom interactions with optical nanofibers and is a critical step toward the implementation of all-fiber quantum networks and waveguide quantum electrodynamics (QED) systems using highly excited atoms.","PeriodicalId":471592,"journal":{"name":"Optica Quantum","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135425589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-active-element demultiplexed multi-photon source 单有源解复用多光子源
Pub Date : 2023-09-28 DOI: 10.1364/opticaq.494643
L. M. Hansen, L. Carosini, L. Jehle, F. Giorgino, R. Houvenaghel, M. Vyvlecka, J. C. Loredo, P. Walther
Temporal-to-spatial mode demultiplexing routes non-simultaneous events of the same spatial mode to distinct output trajectories. This technique has now been widely adopted, because it gives access to higher-number multi-photon states when exploiting solid-state quantum emitters. However, implementations so far have required an always-increasing number of active elements and are therefore rapidly facing resource constraints. Here, we propose and demonstrate a demultiplexing approach that uses only a single active element for routing to, in principle, an arbitrary number of outputs. We employ our device in combination with a high-efficiency single-photon source based on a quantum dot, and measure up to eight demultiplexed highly indistinguishable single photons. We discuss the practical limitations of our approach, and describe in which conditions it can be used to demultiplex, e.g., tens of outputs. Our scheme thus provides a path for the preparation of resource-efficient larger-scale multi-photon sources.
时空模式解复用将同一空间模式的非同时事件路由到不同的输出轨迹。这种技术现在已经被广泛采用,因为它可以在利用固态量子发射器时获得更高数量的多光子态。然而,到目前为止,实现需要不断增加的活动元素数量,因此迅速面临资源限制。在这里,我们提出并演示了一种解复用方法,该方法原则上仅使用单个活动元素路由到任意数量的输出。我们将我们的设备与基于量子点的高效单光子源结合使用,并测量多达八个解复用的高度不可区分的单光子。我们讨论了我们的方法的实际局限性,并描述了在哪些条件下它可以用于解复用,例如,几十个输出。因此,我们的方案为制备资源高效的大规模多光子源提供了一条途径。
{"title":"Single-active-element demultiplexed multi-photon source","authors":"L. M. Hansen, L. Carosini, L. Jehle, F. Giorgino, R. Houvenaghel, M. Vyvlecka, J. C. Loredo, P. Walther","doi":"10.1364/opticaq.494643","DOIUrl":"https://doi.org/10.1364/opticaq.494643","url":null,"abstract":"Temporal-to-spatial mode demultiplexing routes non-simultaneous events of the same spatial mode to distinct output trajectories. This technique has now been widely adopted, because it gives access to higher-number multi-photon states when exploiting solid-state quantum emitters. However, implementations so far have required an always-increasing number of active elements and are therefore rapidly facing resource constraints. Here, we propose and demonstrate a demultiplexing approach that uses only a single active element for routing to, in principle, an arbitrary number of outputs. We employ our device in combination with a high-efficiency single-photon source based on a quantum dot, and measure up to eight demultiplexed highly indistinguishable single photons. We discuss the practical limitations of our approach, and describe in which conditions it can be used to demultiplex, e.g., tens of outputs. Our scheme thus provides a path for the preparation of resource-efficient larger-scale multi-photon sources.","PeriodicalId":471592,"journal":{"name":"Optica Quantum","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135425590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Resource-efficient low-loss four-channel active demultiplexer for single photons 资源高效、低损耗的单光子四通道有源解复用器
Pub Date : 2023-09-28 DOI: 10.1364/opticaq.494449
M. Dryazgov, Yu. Biriukov, I. Dyakonov, K. Taratorin, A. Korneev, M. Rakhlin, A. Galimov, G. Klimko, S. Sorokin, M. Kulagina, Yu. Zadiranov, A. Toropov, F. Bergmann, S. Straupe, S. Kulik
We report a design and implementation of a resource-efficient spatial demultiplexer which produces four indistinguishable photons with efficiency of 39.7% per channel. Our scheme is based on a free-space storage/delay line which accumulates four photons and releases them by a controlled polarization rotation using a single Pockels cell.
我们报告了一种资源高效的空间解复用器的设计和实现,该解复用器产生四个不可区分的光子,每个通道的效率为39.7%。我们的方案是基于一个自由空间存储/延迟线,它积累了四个光子,并通过一个受控的偏振旋转释放它们。
{"title":"Resource-efficient low-loss four-channel active demultiplexer for single photons","authors":"M. Dryazgov, Yu. Biriukov, I. Dyakonov, K. Taratorin, A. Korneev, M. Rakhlin, A. Galimov, G. Klimko, S. Sorokin, M. Kulagina, Yu. Zadiranov, A. Toropov, F. Bergmann, S. Straupe, S. Kulik","doi":"10.1364/opticaq.494449","DOIUrl":"https://doi.org/10.1364/opticaq.494449","url":null,"abstract":"We report a design and implementation of a resource-efficient spatial demultiplexer which produces four indistinguishable photons with efficiency of 39.7% per channel. Our scheme is based on a free-space storage/delay line which accumulates four photons and releases them by a controlled polarization rotation using a single Pockels cell.","PeriodicalId":471592,"journal":{"name":"Optica Quantum","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135425587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-active-element demultiplexed multi-photon source 单有源解复用多光子源
Pub Date : 2023-09-28 DOI: 10.1364/opticaq.1.000001
Lena M Hansen, Lorenzo Carosini, Lennart Jehle, Francesco Giorgino, Romane Houvenaghel, Michal Vyvlecka, Juan C Loredo, Philip Walther
Temporal-to-spatial mode demultiplexing routes non-simultaneous events of the same spatial mode to distinct output trajectories. This technique has now been widely adopted, because it gives access to higher-number multi-photon states when exploiting solid-state quantum emitters. However, implementations so far have required an always-increasing number of active elements and are therefore rapidly facing resource constraints. Here, we propose and demonstrate a demultiplexing approach that uses only a single active element for routing to, in principle, an arbitrary number of outputs. We employ our device in combination with a high-efficiency single-photon source based on a quantum dot, and measure up to eight demultiplexed highly indistinguishable single photons. We discuss the practical limitations of our approach, and describe in which conditions it can be used to demultiplex, e.g., tens of outputs. Our scheme thus provides a path for the preparation of resource-efficient larger-scale multi-photon sources.
时空模式解复用将同一空间模式的非同时事件路由到不同的输出轨迹。这种技术现在已经被广泛采用,因为它可以在利用固态量子发射器时获得更高数量的多光子态。然而,到目前为止,实现需要不断增加的活动元素数量,因此迅速面临资源限制。在这里,我们提出并演示了一种解复用方法,该方法原则上仅使用单个活动元素路由到任意数量的输出。我们将我们的设备与基于量子点的高效单光子源结合使用,并测量多达八个解复用的高度不可区分的单光子。我们讨论了我们的方法的实际局限性,并描述了在哪些条件下它可以用于解复用,例如,几十个输出。因此,我们的方案为制备资源高效的大规模多光子源提供了一条途径。
{"title":"Single-active-element demultiplexed multi-photon source","authors":"Lena M Hansen, Lorenzo Carosini, Lennart Jehle, Francesco Giorgino, Romane Houvenaghel, Michal Vyvlecka, Juan C Loredo, Philip Walther","doi":"10.1364/opticaq.1.000001","DOIUrl":"https://doi.org/10.1364/opticaq.1.000001","url":null,"abstract":"Temporal-to-spatial mode demultiplexing routes non-simultaneous events of the same spatial mode to distinct output trajectories. This technique has now been widely adopted, because it gives access to higher-number multi-photon states when exploiting solid-state quantum emitters. However, implementations so far have required an always-increasing number of active elements and are therefore rapidly facing resource constraints. Here, we propose and demonstrate a demultiplexing approach that uses only a single active element for routing to, in principle, an arbitrary number of outputs. We employ our device in combination with a high-efficiency single-photon source based on a quantum dot, and measure up to eight demultiplexed highly indistinguishable single photons. We discuss the practical limitations of our approach, and describe in which conditions it can be used to demultiplex, e.g., tens of outputs. Our scheme thus provides a path for the preparation of resource-efficient larger-scale multi-photon sources.","PeriodicalId":471592,"journal":{"name":"Optica Quantum","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135343122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resource-efficient low-loss four-channel active demultiplexer for single photons 资源高效、低损耗的单光子四通道有源解复用器
Pub Date : 2023-09-28 DOI: 10.1364/opticaq.1.000014
M. Dryazgov, Yu. Biriukov, I. Dyakonov, K. Taratorin, A. Korneev, M. Rakhlin, A. Galimov, G. Klimko, S. Sorokin, M. Kulagina, Yu. Zadiranov, A. Toropov, F. Bergmann, S. Straupe, S. Kulik
We report a design and implementation of a resource-efficient spatial demultiplexer which produces four indistinguishable photons with efficiency of 39.7% per channel. Our scheme is based on a free-space storage/delay line which accumulates four photons and releases them by a controlled polarization rotation using a single Pockels cell.
我们报告了一种资源高效的空间解复用器的设计和实现,该解复用器产生四个不可区分的光子,每个通道的效率为39.7%。我们的方案是基于一个自由空间存储/延迟线,它积累了四个光子,并通过一个受控的偏振旋转释放它们。
{"title":"Resource-efficient low-loss four-channel active demultiplexer for single photons","authors":"M. Dryazgov, Yu. Biriukov, I. Dyakonov, K. Taratorin, A. Korneev, M. Rakhlin, A. Galimov, G. Klimko, S. Sorokin, M. Kulagina, Yu. Zadiranov, A. Toropov, F. Bergmann, S. Straupe, S. Kulik","doi":"10.1364/opticaq.1.000014","DOIUrl":"https://doi.org/10.1364/opticaq.1.000014","url":null,"abstract":"We report a design and implementation of a resource-efficient spatial demultiplexer which produces four indistinguishable photons with efficiency of 39.7% per channel. Our scheme is based on a free-space storage/delay line which accumulates four photons and releases them by a controlled polarization rotation using a single Pockels cell.","PeriodicalId":471592,"journal":{"name":"Optica Quantum","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135385225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconducting wide strip photon detector with high critical current bank structure 具有高临界电流库结构的超导宽带光子探测器
Pub Date : 2023-09-13 DOI: 10.1364/opticaq.497675
Masahiro Yabuno, Fumihiro China, H Terai, Shigehito Miki
Superconducting strip single-photon detectors offer excellent photon detection performance and are indispensable tools for cutting-edge optical science and technologies, including photonic quantum computation and quantum networks. Ultra-wide superconducting strips with widths of tens of micrometers are desirable to achieve high polarization-independent detection efficiency using a simple straight strip. However, biasing the ultra-wide strip with sufficient superconducting current to make it sensitive to infrared photons is challenging. The main difficulty is maldistribution of the superconducting current in the strip, which generates excessive intrinsic dark counts. Here, we present a novel superconducting wide strip photon detector (SWSPD) with a high critical current bank (HCCB) structure. This HCCB structure enables suppression of the intrinsic dark counts and sufficient superconducting current biasing of the wide strip. We have experimentally demonstrated a polarization-independent system detection efficiency of ~78% for 1550 nm wavelength photons and a system dark count rate of ~80 cps using a 20-${mu}$m-wide SWSPD with the HCCB structure. Additionally, fast jitter of 29.8 ps was achieved. The photolithographically manufacturable ultra-wide SWSPD with high efficiency, low dark count, and fast temporal resolution paves the way toward the development of large-scale optical quantum technologies, which will require enormous numbers of ultimate-performance single-photon detectors.
{"title":"Superconducting wide strip photon detector with high critical current bank structure","authors":"Masahiro Yabuno, Fumihiro China, H Terai, Shigehito Miki","doi":"10.1364/opticaq.497675","DOIUrl":"https://doi.org/10.1364/opticaq.497675","url":null,"abstract":"Superconducting strip single-photon detectors offer excellent photon detection performance and are indispensable tools for cutting-edge optical science and technologies, including photonic quantum computation and quantum networks. Ultra-wide superconducting strips with widths of tens of micrometers are desirable to achieve high polarization-independent detection efficiency using a simple straight strip. However, biasing the ultra-wide strip with sufficient superconducting current to make it sensitive to infrared photons is challenging. The main difficulty is maldistribution of the superconducting current in the strip, which generates excessive intrinsic dark counts. Here, we present a novel superconducting wide strip photon detector (SWSPD) with a high critical current bank (HCCB) structure. This HCCB structure enables suppression of the intrinsic dark counts and sufficient superconducting current biasing of the wide strip. We have experimentally demonstrated a polarization-independent system detection efficiency of ~78% for 1550 nm wavelength photons and a system dark count rate of ~80 cps using a 20-${mu}$m-wide SWSPD with the HCCB structure. Additionally, fast jitter of 29.8 ps was achieved. The photolithographically manufacturable ultra-wide SWSPD with high efficiency, low dark count, and fast temporal resolution paves the way toward the development of large-scale optical quantum technologies, which will require enormous numbers of ultimate-performance single-photon detectors.","PeriodicalId":471592,"journal":{"name":"Optica Quantum","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135786193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated Electro-optic Control of Biphoton Generation Using Hybrid Photonics 基于混合光子学的双光子生成集成电光控制
Pub Date : 2023-09-12 DOI: 10.1364/opticaq.497702
Xiaoxi Wang, Viphretuo Mere, Forrest Valdez, Shayan Mookherjea
{"title":"Integrated Electro-optic Control of Biphoton Generation Using Hybrid Photonics","authors":"Xiaoxi Wang, Viphretuo Mere, Forrest Valdez, Shayan Mookherjea","doi":"10.1364/opticaq.497702","DOIUrl":"https://doi.org/10.1364/opticaq.497702","url":null,"abstract":"","PeriodicalId":471592,"journal":{"name":"Optica Quantum","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135886727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Optica Quantum
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1