首页 > 最新文献

Journal of Nonlinear and Variational Analysis最新文献

英文 中文
Adaptively weighted difference model of anisotropic and isotropic total variation for image denoising 各向异性和各向同性全变差自适应加权差分模型的图像去噪
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.07
{"title":"Adaptively weighted difference model of anisotropic and isotropic total variation for image denoising","authors":"","doi":"10.23952/jnva.7.2023.4.07","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.07","url":null,"abstract":"","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83103157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double inertial parameters forward-backward splitting method: Applications to compressed sensing, image processing, and SCAD penalty problems 双惯性参数前向后分裂方法:应用于压缩感知,图像处理,和SCAD罚问题
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.10
{"title":"Double inertial parameters forward-backward splitting method: Applications to compressed sensing, image processing, and SCAD penalty problems","authors":"","doi":"10.23952/jnva.7.2023.4.10","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.10","url":null,"abstract":"","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73152317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted-type image segmentation model via coupling heat kernel convolution with high-order total variation 基于高阶总变分耦合热核卷积的加权图像分割模型
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.03
{"title":"Weighted-type image segmentation model via coupling heat kernel convolution with high-order total variation","authors":"","doi":"10.23952/jnva.7.2023.4.03","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.03","url":null,"abstract":"","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82991406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse broadband beamformer design via proximal optimization Techniques 基于近邻优化技术的稀疏宽带波束形成器设计
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.02
{"title":"Sparse broadband beamformer design via proximal optimization Techniques","authors":"","doi":"10.23952/jnva.7.2023.4.02","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.02","url":null,"abstract":"","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75886191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multitemporal image cloud removal using group sparsity and nonconvex low-rank approximation 基于群稀疏和非凸低秩逼近的多时相图像云去除
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.05
{"title":"Multitemporal image cloud removal using group sparsity and nonconvex low-rank approximation","authors":"","doi":"10.23952/jnva.7.2023.4.05","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.05","url":null,"abstract":"","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84492041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drop-DIP: A single-image denoising method based on deep image prior Drop-DIP:一种基于深度图像先验的单图像去噪方法
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.04
Xueding Zhang, Zhemin Li, Hongxia Wang
. Over the past few years, deep learning methods have emerged as powerful image denoising tools. Among them, unsupervised deep learning without external training data is more practical and challenging. Reducing noisy overfitting is challenging due to single-image unsupervised learning is prone to overfitting. In this paper, we propose a method named drop-DIP combing Deep Image Prior (DIP) with drop-out for the first time to solve the above problems. In our method, we construct new network training pairs by performing drop-out training on the Bernoulli sampling of the input and output, and then construct a regularization term by using the corrected bias of the output and the generated prior. Finally, update the parameters through the Alternating Direction Method of Multipliers (ADMM) algorithm. Experiments demonstrate that drop-DIP can alleviate the overfitting difficulty in DIP, facilitate the early stopping of the network, and is applicable to different noise models. Furthermore, our method has good performance on Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) metrics validated by two different datasets.
. 在过去的几年里,深度学习方法已经成为强大的图像去噪工具。其中,无外部训练数据的无监督深度学习更具实用性和挑战性。由于单图像无监督学习容易产生过拟合,减少噪声过拟合是一项挑战。本文首次提出了一种将Deep Image Prior (DIP)与drop-out相结合的drop-DIP方法来解决上述问题。在我们的方法中,我们通过对输入和输出的伯努利采样进行drop-out训练来构建新的网络训练对,然后利用输出的修正偏差和生成的先验构造正则化项。最后,通过交替方向乘法器(ADMM)算法更新参数。实验表明,drop-DIP可以缓解DIP的过拟合困难,有利于网络的早期停止,并且适用于不同的噪声模型。此外,我们的方法在峰值信噪比(PSNR)、结构相似度(SSIM)和学习感知图像补丁相似度(LPIPS)指标上具有良好的性能,并通过两个不同的数据集验证。
{"title":"Drop-DIP: A single-image denoising method based on deep image prior","authors":"Xueding Zhang, Zhemin Li, Hongxia Wang","doi":"10.23952/jnva.7.2023.4.04","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.04","url":null,"abstract":". Over the past few years, deep learning methods have emerged as powerful image denoising tools. Among them, unsupervised deep learning without external training data is more practical and challenging. Reducing noisy overfitting is challenging due to single-image unsupervised learning is prone to overfitting. In this paper, we propose a method named drop-DIP combing Deep Image Prior (DIP) with drop-out for the first time to solve the above problems. In our method, we construct new network training pairs by performing drop-out training on the Bernoulli sampling of the input and output, and then construct a regularization term by using the corrected bias of the output and the generated prior. Finally, update the parameters through the Alternating Direction Method of Multipliers (ADMM) algorithm. Experiments demonstrate that drop-DIP can alleviate the overfitting difficulty in DIP, facilitate the early stopping of the network, and is applicable to different noise models. Furthermore, our method has good performance on Peak Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) metrics validated by two different datasets.","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73993323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sampling complexity on nonconvex sparse phase retrieval problem 非凸稀疏相位检索问题的采样复杂度
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.09
{"title":"The sampling complexity on nonconvex sparse phase retrieval problem","authors":"","doi":"10.23952/jnva.7.2023.4.09","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.09","url":null,"abstract":"","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82516003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-implicit back propagation 半隐式反向传播
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.08
{"title":"Semi-implicit back propagation","authors":"","doi":"10.23952/jnva.7.2023.4.08","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.08","url":null,"abstract":"","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84037292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Special issue on fast algorithms and theories for applications in signal and image processing 社论:关于信号和图像处理应用的快速算法和理论的特刊
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.01
{"title":"Editorial: Special issue on fast algorithms and theories for applications in signal and image processing","authors":"","doi":"10.23952/jnva.7.2023.4.01","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.01","url":null,"abstract":"","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80673693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absolute value equations with data uncertainty in the $l_1$ and $l_infty$ norm balls 在$l_1$和$l_infty$范数球中具有数据不确定性的绝对值方程
IF 2.9 2区 数学 Q1 Mathematics Pub Date : 2023-08-01 DOI: 10.23952/jnva.7.2023.4.06
{"title":"Absolute value equations with data uncertainty in the $l_1$ and $l_infty$ norm balls","authors":"","doi":"10.23952/jnva.7.2023.4.06","DOIUrl":"https://doi.org/10.23952/jnva.7.2023.4.06","url":null,"abstract":"","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75698150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nonlinear and Variational Analysis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1