Enhancing low-light images in computer vision is a significant challenge that requires innovative methods to improve its robustness. Low-light image enhancement (LLIE) enhances the quality of images affected by poor lighting conditions by implementing various loss functions such as reconstruction, perceptual, smoothness, adversarial, and exposure. This review analyses and compares different methods, ranging from traditional to cutting-edge deep learning methods, showcasing the significant advancements in the field. Although similar reviews have been studied on LLIE, this paper not only updates the knowledge but also focuses on recent deep learning methods from various perspectives or interpretations. The methodology used in this paper compares different methods from the literature and identifies the potential research gaps. This paper highlights the recent advancements in the field by classifying them into three classes, demonstrated by the continuous enhancements in LLIE methods. These improved methods use different loss functions showing higher efficacy through metrics such as Peak Signal-to-Noise Ratio, Structural Similarity Index Measure, and Naturalness Image Quality Evaluator. The research emphasizes the significance of advanced deep learning techniques and comprehensively compares different LLIE methods on various benchmark image datasets. This research is a foundation for scientists to illustrate potential future research directions.