首页 > 最新文献

Journal of King Saud University-Computer and Information Sciences最新文献

英文 中文
Firefly forest: A swarm iteration-free swarm intelligence clustering algorithm 萤火虫森林无迭代群集智能聚类算法
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-18 DOI: 10.1016/j.jksuci.2024.102219
Shijie Zeng , Yuefei Wang , Yukun Wen , Xi Yu , Binxiong Li , Zixu Wang
The Firefly Forest algorithm is a novel bio-inspired clustering method designed to address key challenges in traditional clustering techniques, such as the need to set a fixed number of neighbors, predefine cluster numbers, and rely on computationally intensive swarm iterative processes. The algorithm begins by using an adaptive neighbor estimation, refined to filter outliers, to determine the brightness of each firefly. This brightness guides the formation of firefly trees, which are then merged into cohesive firefly forests, completing the clustering process. This approach allows the algorithm to dynamically capture both local and global patterns, eliminate the need for predefined cluster numbers, and operate with low computational complexity. Experiments involving 14 established clustering algorithms across 19 diverse datasets, using 8 evaluative metrics, demonstrate the Firefly Forest algorithm’s superior accuracy and robustness. These results highlight its potential as a powerful tool for real-world clustering applications. Our code is available at: https://github.com/firesaku/FireflyForest.
萤火虫森林算法是一种新颖的生物启发聚类方法,旨在解决传统聚类技术面临的主要挑战,如需要设置固定的邻居数量、预先确定聚类数量,以及依赖计算密集型的蜂群迭代过程。该算法首先使用自适应邻居估计,并对其进行改进以过滤异常值,从而确定每个萤火虫的亮度。这种亮度会引导萤火虫树的形成,然后将其合并成有凝聚力的萤火虫森林,完成聚类过程。这种方法允许算法动态捕捉局部和全局模式,无需预定义的聚类数量,并且计算复杂度低。在 19 个不同的数据集上使用 14 种成熟的聚类算法,并使用 8 个评估指标进行实验,结果表明萤火虫森林算法具有卓越的准确性和鲁棒性。这些结果凸显了萤火虫森林算法作为现实世界聚类应用的强大工具的潜力。我们的代码可在以下网址获取:https://github.com/firesaku/FireflyForest。
{"title":"Firefly forest: A swarm iteration-free swarm intelligence clustering algorithm","authors":"Shijie Zeng ,&nbsp;Yuefei Wang ,&nbsp;Yukun Wen ,&nbsp;Xi Yu ,&nbsp;Binxiong Li ,&nbsp;Zixu Wang","doi":"10.1016/j.jksuci.2024.102219","DOIUrl":"10.1016/j.jksuci.2024.102219","url":null,"abstract":"<div><div>The Firefly Forest algorithm is a novel bio-inspired clustering method designed to address key challenges in traditional clustering techniques, such as the need to set a fixed number of neighbors, predefine cluster numbers, and rely on computationally intensive swarm iterative processes. The algorithm begins by using an adaptive neighbor estimation, refined to filter outliers, to determine the brightness of each firefly. This brightness guides the formation of firefly trees, which are then merged into cohesive firefly forests, completing the clustering process. This approach allows the algorithm to dynamically capture both local and global patterns, eliminate the need for predefined cluster numbers, and operate with low computational complexity. Experiments involving 14 established clustering algorithms across 19 diverse datasets, using 8 evaluative metrics, demonstrate the Firefly Forest algorithm’s superior accuracy and robustness. These results highlight its potential as a powerful tool for real-world clustering applications. Our code is available at: https://github.com/firesaku/FireflyForest.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102219"},"PeriodicalIF":5.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IMOABC: An efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection IMOABC:用于高维特征选择的高效多目标滤波器-包装器混合方法
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-09 DOI: 10.1016/j.jksuci.2024.102205
Jiahao Li , Tao Luo, Baitao Zhang, Min Chen, Jie Zhou
With the development of data science, the challenge of high-dimensional data has become increasingly prevalent. High-dimensional data contains a significant amount of redundant information, which can adversely affect the performance and effectiveness of machine learning algorithms. Therefore, it is necessary to select the most relevant features from the raw data and perform feature selection on high-dimensional data. In this paper, a novel filter–wrapper feature selection method based on an improved multi-objective artificial bee colony algorithm (IMOABC) is proposed to address the feature selection problem in high-dimensional data. This method simultaneously considers three objectives: feature error rate, feature subset ratio, and distance, effectively improving the efficiency of obtaining the optimal feature subset on high-dimensional data. Additionally, a novel Fisher Score-based initialization strategy is introduced, significantly enhancing the quality of solutions. Furthermore, a new dynamic adaptive strategy is designed, effectively improving the algorithm’s convergence speed and enhancing its global search capability. Comparative experimental results on microarray cancer datasets demonstrate that the proposed method significantly improves classification accuracy and effectively reduces the size of the feature subset when compared to various traditional and state-of-the-art multi-objective feature selection algorithms. IMOABC improves the classification accuracy by 2.27% on average compared to various multi-objective feature selection methods, while reducing the number of selected features by 88.76% on average. Meanwhile, IMOABC shows an average improvement of 4.24% in classification accuracy across all datasets, with an average reduction of 76.73% in the number of selected features compared to various traditional methods.
随着数据科学的发展,高维数据的挑战变得越来越普遍。高维数据包含大量冗余信息,会对机器学习算法的性能和效果产生不利影响。因此,有必要从原始数据中选择最相关的特征,并对高维数据进行特征选择。本文提出了一种基于改进的多目标人工蜂群算法(IMOABC)的新型滤波包特征选择方法,以解决高维数据中的特征选择问题。该方法同时考虑了特征误差率、特征子集比和距离三个目标,有效提高了在高维数据中获得最佳特征子集的效率。此外,该方法还引入了一种基于 Fisher Score 的新型初始化策略,大大提高了解决方案的质量。此外,还设计了一种新的动态自适应策略,有效提高了算法的收敛速度,增强了全局搜索能力。微阵列癌症数据集的对比实验结果表明,与各种传统和最先进的多目标特征选择算法相比,IMOABC 能显著提高分类准确率,并有效减少特征子集的大小。与各种多目标特征选择方法相比,IMOABC 的分类准确率平均提高了 2.27%,而所选特征的数量平均减少了 88.76%。同时,与各种传统方法相比,IMOABC 在所有数据集上的分类准确率平均提高了 4.24%,所选特征的数量平均减少了 76.73%。
{"title":"IMOABC: An efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection","authors":"Jiahao Li ,&nbsp;Tao Luo,&nbsp;Baitao Zhang,&nbsp;Min Chen,&nbsp;Jie Zhou","doi":"10.1016/j.jksuci.2024.102205","DOIUrl":"10.1016/j.jksuci.2024.102205","url":null,"abstract":"<div><div>With the development of data science, the challenge of high-dimensional data has become increasingly prevalent. High-dimensional data contains a significant amount of redundant information, which can adversely affect the performance and effectiveness of machine learning algorithms. Therefore, it is necessary to select the most relevant features from the raw data and perform feature selection on high-dimensional data. In this paper, a novel filter–wrapper feature selection method based on an improved multi-objective artificial bee colony algorithm (IMOABC) is proposed to address the feature selection problem in high-dimensional data. This method simultaneously considers three objectives: feature error rate, feature subset ratio, and distance, effectively improving the efficiency of obtaining the optimal feature subset on high-dimensional data. Additionally, a novel Fisher Score-based initialization strategy is introduced, significantly enhancing the quality of solutions. Furthermore, a new dynamic adaptive strategy is designed, effectively improving the algorithm’s convergence speed and enhancing its global search capability. Comparative experimental results on microarray cancer datasets demonstrate that the proposed method significantly improves classification accuracy and effectively reduces the size of the feature subset when compared to various traditional and state-of-the-art multi-objective feature selection algorithms. IMOABC improves the classification accuracy by 2.27% on average compared to various multi-objective feature selection methods, while reducing the number of selected features by 88.76% on average. Meanwhile, IMOABC shows an average improvement of 4.24% in classification accuracy across all datasets, with an average reduction of 76.73% in the number of selected features compared to various traditional methods.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102205"},"PeriodicalIF":5.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced security measures in coupled phase-shift STAR-RIS networks: A DRL approach 耦合相移 STAR-RIS 网络中的高级安全措施:DRL 方法
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-09 DOI: 10.1016/j.jksuci.2024.102215
Abdul Wahid , Syed Zain Ul Abideen , Manzoor Ahmed , Wali Ullah Khan , Muhammad Sheraz , Teong Chee Chuah , Ying Loong Lee
The rapid development of next-generation wireless networks has intensified the need for robust security measures, particularly in environments susceptible to eavesdropping. Simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) have emerged as a transformative technology, offering full-space coverage by manipulating electromagnetic wave propagation. However, the inherent flexibility of STAR-RIS introduces new vulnerabilities, making secure communication a significant challenge. To overcome these challenges, we propose a deep reinforcement learning (DRL) based secure and efficient beamforming optimization strategy, leveraging the deep deterministic policy gradient (DDPG) algorithm. By framing the problem as a Markov decision process (MDP), our approach enables the DDPG algorithm to learn optimal strategies for beamforming and transmission and reflection coefficients (TARCs) configurations. This method is specifically designed to optimize phase-shift coefficients within the STAR-RIS environment, effectively managing the coupled phase shifts and complex interactions that are critical for enhancing physical layer security (PLS). Through extensive simulations, we demonstrate that our DRL-based strategy not only outperforms traditional optimization techniques but also achieves real-time adaptive optimization, significantly improving both confidentiality and network efficiency. This research addresses key gaps in secure wireless communication and sets a new standard for future advancements in intelligent, adaptable network technologies.
下一代无线网络的快速发展加剧了对稳健安全措施的需求,尤其是在易被窃听的环境中。同时发射和反射可重构智能表面(STAR-RIS)作为一种变革性技术应运而生,通过操纵电磁波传播提供全空间覆盖。然而,STAR-RIS 固有的灵活性带来了新的漏洞,使安全通信成为一项重大挑战。为了克服这些挑战,我们利用深度确定性策略梯度(DDPG)算法,提出了一种基于深度强化学习(DRL)的安全高效波束成形优化策略。通过将问题框架化为马尔可夫决策过程(MDP),我们的方法使 DDPG 算法能够学习波束成形和传输与反射系数(TARC)配置的最佳策略。这种方法专为在 STAR-RIS 环境中优化相移系数而设计,可有效管理耦合相移和复杂的相互作用,这对增强物理层安全性(PLS)至关重要。通过大量仿真,我们证明了基于 DRL 的策略不仅优于传统优化技术,还能实现实时自适应优化,从而显著提高保密性和网络效率。这项研究填补了安全无线通信领域的关键空白,为未来智能、自适应网络技术的发展树立了新标准。
{"title":"Advanced security measures in coupled phase-shift STAR-RIS networks: A DRL approach","authors":"Abdul Wahid ,&nbsp;Syed Zain Ul Abideen ,&nbsp;Manzoor Ahmed ,&nbsp;Wali Ullah Khan ,&nbsp;Muhammad Sheraz ,&nbsp;Teong Chee Chuah ,&nbsp;Ying Loong Lee","doi":"10.1016/j.jksuci.2024.102215","DOIUrl":"10.1016/j.jksuci.2024.102215","url":null,"abstract":"<div><div>The rapid development of next-generation wireless networks has intensified the need for robust security measures, particularly in environments susceptible to eavesdropping. Simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) have emerged as a transformative technology, offering full-space coverage by manipulating electromagnetic wave propagation. However, the inherent flexibility of STAR-RIS introduces new vulnerabilities, making secure communication a significant challenge. To overcome these challenges, we propose a deep reinforcement learning (DRL) based secure and efficient beamforming optimization strategy, leveraging the deep deterministic policy gradient (DDPG) algorithm. By framing the problem as a Markov decision process (MDP), our approach enables the DDPG algorithm to learn optimal strategies for beamforming and transmission and reflection coefficients (TARCs) configurations. This method is specifically designed to optimize phase-shift coefficients within the STAR-RIS environment, effectively managing the coupled phase shifts and complex interactions that are critical for enhancing physical layer security (PLS). Through extensive simulations, we demonstrate that our DRL-based strategy not only outperforms traditional optimization techniques but also achieves real-time adaptive optimization, significantly improving both confidentiality and network efficiency. This research addresses key gaps in secure wireless communication and sets a new standard for future advancements in intelligent, adaptable network technologies.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102215"},"PeriodicalIF":5.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endoscopic video aided identification method for gastric area 内窥镜视频辅助胃区识别方法
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-05 DOI: 10.1016/j.jksuci.2024.102208
Xiangwei Zheng, Dejian Su, Xuanchi Chen, Mingzhe Zhang
Probe-based confocal laser endomicroscopy (pCLE) is a significant diagnostic instrument and is frequently utilized to diagnose the severity of gastric intestinal metaplasia (GIM). The physicians must comprehensively analyze video clips recorded with pCLE from the gastric antrum, gastric body, and gastric angle area to determine the patient’s condition. However, due to the limitations of the pCLE’s microscopic imaging structure, the gastric areas detected cannot be identified and recorded in real time, which may poses a risk of missing potential areas of disease occurrence and is not conducive to the subsequent precise treatment of the lesion area. Therefore, this paper proposes an endoscopic video aided identification method for identifying gastric areas (EVIGA), which are utilized for determining the detected areas of pCLE in real-time. Firstly, the start time of the diagnosis clip is determined by real-time detecting the working states of pCLE. Then, the endoscopic video clip is truncated according to the correspondence between pCLE and endoscopic video in the time sequence for detecting gastric areas. In order to accurately identify pCLE detected gastric areas, a probe-based confocal laser endomicroscopy diagnosis area identification model (pCLEDAM) is constructed with an hourglass convolution designed for single-frame feature extraction and a temporal feature-sensitive extraction structure for spatial feature extraction. The extracted feature maps are unfolded and fed into the fully connected layer to classify the detected areas. To validate the proposed method, 67 clinical confocal laser endomicroscopy diagnosis cases are collected from a tertiary care hospital, and 500 video clips are finally reserved after audited for dataset construction. Experiments show that the accuracy of area identification on the test dataset achieves 96.0% and is much higher than other related algorithms, achieving the accurate identification of pCLE detected areas.
探针共焦激光内窥镜(pCLE)是一种重要的诊断仪器,经常被用来诊断胃肠变性(GIM)的严重程度。医生必须全面分析 pCLE 从胃窦、胃体和胃角区域记录的视频片段,以确定患者的病情。然而,由于pCLE显微成像结构的局限性,所检测到的胃部区域无法被实时识别和记录,有可能遗漏潜在的疾病发生区域,不利于后续对病变区域的精确治疗。因此,本文提出了一种内镜视频辅助胃区识别方法(EVIGA),用于实时确定检测到的胃癌病变区域。首先,通过实时检测 pCLE 的工作状态来确定诊断片段的开始时间。然后,根据 pCLE 和内窥镜视频在时间序列上的对应关系截断内窥镜视频片段,以检测胃部区域。为了准确识别 pCLE 检测到的胃区,构建了一个基于探针的共聚焦激光内窥镜诊断区域识别模型(pCLEDAM),其沙漏卷积设计用于单帧特征提取,时间特征敏感提取结构用于空间特征提取。提取的特征图被展开并输入全连接层,对检测到的区域进行分类。为了验证所提出的方法,从一家三甲医院收集了 67 个临床共焦激光内窥镜诊断病例,经审核后最终保留了 500 个视频片段用于数据集构建。实验表明,测试数据集的区域识别准确率达到 96.0%,远高于其他相关算法,实现了对 pCLE 检测区域的准确识别。
{"title":"Endoscopic video aided identification method for gastric area","authors":"Xiangwei Zheng,&nbsp;Dejian Su,&nbsp;Xuanchi Chen,&nbsp;Mingzhe Zhang","doi":"10.1016/j.jksuci.2024.102208","DOIUrl":"10.1016/j.jksuci.2024.102208","url":null,"abstract":"<div><div>Probe-based confocal laser endomicroscopy (pCLE) is a significant diagnostic instrument and is frequently utilized to diagnose the severity of gastric intestinal metaplasia (GIM). The physicians must comprehensively analyze video clips recorded with pCLE from the gastric antrum, gastric body, and gastric angle area to determine the patient’s condition. However, due to the limitations of the pCLE’s microscopic imaging structure, the gastric areas detected cannot be identified and recorded in real time, which may poses a risk of missing potential areas of disease occurrence and is not conducive to the subsequent precise treatment of the lesion area. Therefore, this paper proposes an endoscopic video aided identification method for identifying gastric areas (EVIGA), which are utilized for determining the detected areas of pCLE in real-time. Firstly, the start time of the diagnosis clip is determined by real-time detecting the working states of pCLE. Then, the endoscopic video clip is truncated according to the correspondence between pCLE and endoscopic video in the time sequence for detecting gastric areas. In order to accurately identify pCLE detected gastric areas, a probe-based confocal laser endomicroscopy diagnosis area identification model (pCLEDAM) is constructed with an hourglass convolution designed for single-frame feature extraction and a temporal feature-sensitive extraction structure for spatial feature extraction. The extracted feature maps are unfolded and fed into the fully connected layer to classify the detected areas. To validate the proposed method, 67 clinical confocal laser endomicroscopy diagnosis cases are collected from a tertiary care hospital, and 500 video clips are finally reserved after audited for dataset construction. Experiments show that the accuracy of area identification on the test dataset achieves 96.0% and is much higher than other related algorithms, achieving the accurate identification of pCLE detected areas.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102208"},"PeriodicalIF":5.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-chain zero-knowledge machine learning: An overview and comparison 链上零知识机器学习:概述与比较
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-05 DOI: 10.1016/j.jksuci.2024.102207
Vid Keršič, Sašo Karakatič, Muhamed Turkanović
Zero-knowledge proofs introduce a mechanism to prove that certain computations were performed without revealing any underlying information and are used commonly in blockchain-based decentralized apps (dapps). This cryptographic technique addresses trust issues prevalent in blockchain applications, and has now been adapted for machine learning (ML) services, known as Zero-Knowledge Machine Learning (ZKML). By leveraging the distributed nature of blockchains, this approach enhances the trustworthiness of ML deployments, and opens up new possibilities for privacy-preserving and robust ML applications within dapps. This paper provides a comprehensive overview of the ZKML process and its critical components for verifying ML services on-chain. Furthermore, this paper explores how blockchain technology and smart contracts can offer verifiable, trustless proof that a specific ML model has been used correctly to perform inference, all without relying on a single trusted entity. Additionally, the paper compares and reviews existing frameworks for implementing ZKML in dapps, serving as a reference point for researchers interested in this emerging field.
零知识证明引入了一种机制,用于证明某些计算是在不透露任何底层信息的情况下进行的,常用于基于区块链的去中心化应用程序(dapps)。这种加密技术解决了区块链应用中普遍存在的信任问题,现在已被用于机器学习(ML)服务,即零知识机器学习(ZKML)。通过利用区块链的分布式特性,这种方法提高了 ML 部署的可信度,并为 dapps 中保护隐私和稳健的 ML 应用开辟了新的可能性。本文全面概述了 ZKML 流程及其用于验证链上 ML 服务的关键组件。此外,本文还探讨了区块链技术和智能合约如何提供可验证的无信任证明,证明特定的 ML 模型已被正确用于执行推理,而无需依赖单一的可信实体。此外,本文还比较和回顾了在 dapp 中实施 ZKML 的现有框架,为对这一新兴领域感兴趣的研究人员提供了参考。
{"title":"On-chain zero-knowledge machine learning: An overview and comparison","authors":"Vid Keršič,&nbsp;Sašo Karakatič,&nbsp;Muhamed Turkanović","doi":"10.1016/j.jksuci.2024.102207","DOIUrl":"10.1016/j.jksuci.2024.102207","url":null,"abstract":"<div><div>Zero-knowledge proofs introduce a mechanism to prove that certain computations were performed without revealing any underlying information and are used commonly in blockchain-based decentralized apps (dapps). This cryptographic technique addresses trust issues prevalent in blockchain applications, and has now been adapted for machine learning (ML) services, known as Zero-Knowledge Machine Learning (ZKML). By leveraging the distributed nature of blockchains, this approach enhances the trustworthiness of ML deployments, and opens up new possibilities for privacy-preserving and robust ML applications within dapps. This paper provides a comprehensive overview of the ZKML process and its critical components for verifying ML services on-chain. Furthermore, this paper explores how blockchain technology and smart contracts can offer verifiable, trustless proof that a specific ML model has been used correctly to perform inference, all without relying on a single trusted entity. Additionally, the paper compares and reviews existing frameworks for implementing ZKML in dapps, serving as a reference point for researchers interested in this emerging field.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102207"},"PeriodicalIF":5.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IPSRM: An intent perceived sequential recommendation model IPSRM:意图感知顺序推荐模型
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-05 DOI: 10.1016/j.jksuci.2024.102206
Chaoran Wang , Mingyang Wang , Xianjie Wang , Yingchun Tan

Objectives:

Sequential recommendation aims to recommend items that are relevant to users’ interests based on their existing interaction sequences. Current models lack in capturing users’ latent intentions and do not sufficiently consider sequence information during the modeling of users and items. Additionally, noise in user interaction sequences can affect the model’s optimization process.

Methods:

This paper introduces an intent perceived sequential recommendation model (IPSRM). IPSRM employs the generalized expectation–maximization (EM) framework, alternating between learning sequence representations and optimizing the model to better capture the underlying intentions of user interactions. Specifically, IPSRM maps unlabeled behavioral sequences into frequency domain filtering and random Gaussian distribution space. These mappings reduce the impact of noise and improve the learning of user behavior representations. Through clustering process, IPSRM captures users’ potential interaction intentions and incorporates them as one of the supervisions into the contrastive self-supervised learning process to guide the optimization process.

Results:

Experimental results on four standard datasets demonstrate the superiority of IPSRM. Comparative experiments also verify that IPSRM exhibits strong robustness under cold start and noisy interaction conditions.

Conclusions:

Capturing latent user intentions, integrating intention-based supervision into model optimization, and mitigating noise in sequential modeling significantly enhance the performance of sequential recommendation systems.
目标:序列推荐旨在根据用户现有的交互序列,推荐与用户兴趣相关的项目。目前的模型无法捕捉用户的潜在意图,在用户和项目建模过程中也没有充分考虑序列信息。此外,用户互动序列中的噪声也会影响模型的优化过程。方法:本文介绍了一种意图感知序列推荐模型(IPSRM)。IPSRM采用广义期望最大化(EM)框架,在学习序列表示和优化模型之间交替进行,以更好地捕捉用户交互的潜在意图。具体来说,IPSRM 将未标记的行为序列映射到频域滤波和随机高斯分布空间中。这些映射降低了噪声的影响,提高了用户行为表征的学习能力。通过聚类过程,IPSRM 捕捉到了用户潜在的交互意图,并将其作为监督之一纳入对比自监督学习过程,以指导优化过程。结果:在四个标准数据集上的实验结果证明了 IPSRM 的优越性。结论:捕捉潜在用户意图、将基于意图的监督整合到模型优化中,以及在顺序建模中减少噪声,都能显著提高顺序推荐系统的性能。
{"title":"IPSRM: An intent perceived sequential recommendation model","authors":"Chaoran Wang ,&nbsp;Mingyang Wang ,&nbsp;Xianjie Wang ,&nbsp;Yingchun Tan","doi":"10.1016/j.jksuci.2024.102206","DOIUrl":"10.1016/j.jksuci.2024.102206","url":null,"abstract":"<div><h3>Objectives:</h3><div>Sequential recommendation aims to recommend items that are relevant to users’ interests based on their existing interaction sequences. Current models lack in capturing users’ latent intentions and do not sufficiently consider sequence information during the modeling of users and items. Additionally, noise in user interaction sequences can affect the model’s optimization process.</div></div><div><h3>Methods:</h3><div>This paper introduces an intent perceived sequential recommendation model (IPSRM). IPSRM employs the generalized expectation–maximization (EM) framework, alternating between learning sequence representations and optimizing the model to better capture the underlying intentions of user interactions. Specifically, IPSRM maps unlabeled behavioral sequences into frequency domain filtering and random Gaussian distribution space. These mappings reduce the impact of noise and improve the learning of user behavior representations. Through clustering process, IPSRM captures users’ potential interaction intentions and incorporates them as one of the supervisions into the contrastive self-supervised learning process to guide the optimization process.</div></div><div><h3>Results:</h3><div>Experimental results on four standard datasets demonstrate the superiority of IPSRM. Comparative experiments also verify that IPSRM exhibits strong robustness under cold start and noisy interaction conditions.</div></div><div><h3>Conclusions:</h3><div>Capturing latent user intentions, integrating intention-based supervision into model optimization, and mitigating noise in sequential modeling significantly enhance the performance of sequential recommendation systems.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102206"},"PeriodicalIF":5.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time segmentation and classification of whole-slide images for tumor biomarker scoring 用于肿瘤生物标记物评分的全切片图像实时分割和分类
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-05 DOI: 10.1016/j.jksuci.2024.102204
Md Jahid Hasan , Wan Siti Halimatul Munirah Wan Ahmad , Mohammad Faizal Ahmad Fauzi , Jenny Tung Hiong Lee , See Yee Khor , Lai Meng Looi , Fazly Salleh Abas , Afzan Adam , Elaine Wan Ling Chan
Histopathology image segmentation and classification are essential for diagnosing and treating breast cancer. This study introduced a highly accurate segmentation and classification for histopathology images using a single architecture. We utilized the famous segmentation architectures, SegNet and U-Net, and modified the decoder to attach ResNet, VGG and DenseNet to perform classification tasks. These hybrid models are integrated with Stardist as the backbone, and implemented in a real-time pathologist workflow with a graphical user interface. These models were trained and tested offline using the ER-IHC-stained private and H&E-stained public datasets (MoNuSeg). For real-time evaluation, the proposed model was evaluated using PR-IHC-stained glass slides. It achieved the highest segmentation pixel-based F1-score of 0.902 and 0.903 for private and public datasets respectively, and a classification-based F1-score of 0.833 for private dataset. The experiment shows the robustness of our method where a model trained on ER-IHC dataset able to perform well on real-time microscopy of PR-IHC slides on both 20x and 40x magnification. This will help the pathologists with a quick decision-making process.
组织病理学图像分割和分类对于诊断和治疗乳腺癌至关重要。本研究采用单一架构对组织病理学图像进行高精度分割和分类。我们利用了著名的分割架构 SegNet 和 U-Net,并修改了解码器以附加 ResNet、VGG 和 DenseNet 来执行分类任务。这些混合模型与作为骨干的 Stardist 集成,并通过图形用户界面在病理学家实时工作流程中实施。使用 ER-IHC 染色私人数据集和 H&E 染色公共数据集 (MoNuSeg) 对这些模型进行了离线训练和测试。为了进行实时评估,使用 PR-IHC 染色玻璃切片对所提出的模型进行了评估。在私人数据集和公共数据集上,基于像素的分割 F1 分数分别为 0.902 和 0.903,在私人数据集上,基于分类的 F1 分数为 0.833。实验显示了我们方法的鲁棒性,在 ER-IHC 数据集上训练的模型能够在 20 倍和 40 倍放大率的 PR-IHC 切片实时显微镜检查中表现良好。这将有助于病理学家快速做出决策。
{"title":"Real-time segmentation and classification of whole-slide images for tumor biomarker scoring","authors":"Md Jahid Hasan ,&nbsp;Wan Siti Halimatul Munirah Wan Ahmad ,&nbsp;Mohammad Faizal Ahmad Fauzi ,&nbsp;Jenny Tung Hiong Lee ,&nbsp;See Yee Khor ,&nbsp;Lai Meng Looi ,&nbsp;Fazly Salleh Abas ,&nbsp;Afzan Adam ,&nbsp;Elaine Wan Ling Chan","doi":"10.1016/j.jksuci.2024.102204","DOIUrl":"10.1016/j.jksuci.2024.102204","url":null,"abstract":"<div><div>Histopathology image segmentation and classification are essential for diagnosing and treating breast cancer. This study introduced a highly accurate segmentation and classification for histopathology images using a single architecture. We utilized the famous segmentation architectures, SegNet and U-Net, and modified the decoder to attach ResNet, VGG and DenseNet to perform classification tasks. These hybrid models are integrated with Stardist as the backbone, and implemented in a real-time pathologist workflow with a graphical user interface. These models were trained and tested offline using the ER-IHC-stained private and H&amp;E-stained public datasets (MoNuSeg). For real-time evaluation, the proposed model was evaluated using PR-IHC-stained glass slides. It achieved the highest segmentation pixel-based F1-score of 0.902 and 0.903 for private and public datasets respectively, and a classification-based F1-score of 0.833 for private dataset. The experiment shows the robustness of our method where a model trained on ER-IHC dataset able to perform well on real-time microscopy of PR-IHC slides on both 20x and 40x magnification. This will help the pathologists with a quick decision-making process.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102204"},"PeriodicalIF":5.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-stream dynamic graph structure network for document-level relation extraction 用于文档级关系提取的双流动态图结构网络
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-03 DOI: 10.1016/j.jksuci.2024.102202
Yu Zhong, Bo Shen
Extracting structured information from unstructured text is crucial for knowledge management and utilization, which is the goal of document-level relation extraction. Existing graph-based methods face issues with information confusion and integration, limiting the reasoning capabilities of the model. To tackle this problem, a dual-stream dynamic graph structural network is proposed to model documents from various perspectives. Leveraging the richness of document information, a static document heterogeneous graph is constructed. A dynamic heterogeneous document graph is then induced based on this foundation to facilitate global information aggregation for entity representation learning. Additionally, the static document graph is decomposed into multi-level static semantic graphs, and multi-layer dynamic semantic graphs are further induced, explicitly segregating information from different levels. Information from different streams is effectively integrated via an information integrator. To mitigate the interference of noise during the reasoning process, a noise regularization mechanism is also designed. The experimental results on three extensively utilized publicly accessible datasets for document-level relation extraction demonstrate that our model achieves F1 scores of 62.56%, 71.1%, and 86.9% on the DocRED, CDR, and GDA datasets, respectively, significantly outperforming the baselines. Further analysis also demonstrates the effectiveness of the model in multi-entity scenarios.
从非结构化文本中提取结构化信息对于知识管理和利用至关重要,这也是文档级关系提取的目标。现有的基于图的方法面临着信息混淆和整合的问题,限制了模型的推理能力。为解决这一问题,我们提出了一种双流动态图结构网络,从不同角度对文档进行建模。利用丰富的文档信息,构建静态文档异构图。然后在此基础上诱导出动态异构文档图,以促进实体表征学习的全局信息聚合。此外,静态文档图被分解成多层次的静态语义图,并进一步诱导出多层次的动态语义图,明确分离来自不同层次的信息。来自不同信息流的信息通过信息集成器进行有效集成。为了减少推理过程中的噪声干扰,还设计了噪声正则化机制。在三个广泛使用的公开文档级关系提取数据集上的实验结果表明,我们的模型在 DocRED、CDR 和 GDA 数据集上的 F1 分数分别达到了 62.56%、71.1% 和 86.9%,明显优于基线模型。进一步的分析还证明了该模型在多实体场景中的有效性。
{"title":"Dual-stream dynamic graph structure network for document-level relation extraction","authors":"Yu Zhong,&nbsp;Bo Shen","doi":"10.1016/j.jksuci.2024.102202","DOIUrl":"10.1016/j.jksuci.2024.102202","url":null,"abstract":"<div><div>Extracting structured information from unstructured text is crucial for knowledge management and utilization, which is the goal of document-level relation extraction. Existing graph-based methods face issues with information confusion and integration, limiting the reasoning capabilities of the model. To tackle this problem, a dual-stream dynamic graph structural network is proposed to model documents from various perspectives. Leveraging the richness of document information, a static document heterogeneous graph is constructed. A dynamic heterogeneous document graph is then induced based on this foundation to facilitate global information aggregation for entity representation learning. Additionally, the static document graph is decomposed into multi-level static semantic graphs, and multi-layer dynamic semantic graphs are further induced, explicitly segregating information from different levels. Information from different streams is effectively integrated via an information integrator. To mitigate the interference of noise during the reasoning process, a noise regularization mechanism is also designed. The experimental results on three extensively utilized publicly accessible datasets for document-level relation extraction demonstrate that our model achieves F1 scores of 62.56%, 71.1%, and 86.9% on the DocRED, CDR, and GDA datasets, respectively, significantly outperforming the baselines. Further analysis also demonstrates the effectiveness of the model in multi-entity scenarios.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102202"},"PeriodicalIF":5.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ParaU-Net: An improved UNet parallel coding network for lung nodule segmentation ParaU-Net:用于肺结节分割的改进型 UNet 并行编码网络
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-01 DOI: 10.1016/j.jksuci.2024.102203
Yingqi Lu , Xiangsuo Fan , Jinfeng Wang , Shaojun Chen , Jie Meng
Accurate segmentation of lung nodules is crucial for the early detection of lung cancer and other pulmonary diseases. Traditional segmentation methods face several challenges, such as the overlap between nodules and surrounding anatomical structures like blood vessels and bronchi, as well as the variability in nodule size and shape, which complicates the segmentation algorithms. Existing methods often inadequately address these issues, highlighting the need for a more effective solution. To address these challenges, this paper proposes an improved multi-scale parallel fusion encoding network, ParaU-Net. ParaU-Net enhances the segmentation accuracy and model performance by optimizing the encoding process, improving feature extraction, preserving down-sampling information, and expanding the receptive field. Specifically, the multi-scale parallel fusion mechanism introduced in ParaU-Net better captures the fine features of nodules and reduces interference from other structures. Experiments conducted on the LIDC (The Lung Image Database Consortium) public dataset demonstrate the excellent performance of ParaU-Net in segmentation tasks, with results showing an IoU of 87.15%, Dice of 92.16%, F1-score of 92.24%, F2-score of 92.33%, and F0.5-score of 92.69%. These results significantly outperform other advanced segmentation methods, validating the effectiveness and accuracy of the proposed model in lung nodule CT image analysis. The code is available at https://github.com/XiaoBai-Lyq/ParaU-Net.
准确分割肺结节对于早期检测肺癌和其他肺部疾病至关重要。传统的分割方法面临着一些挑战,例如结节与周围解剖结构(如血管和支气管)之间的重叠,以及结节大小和形状的可变性,这些都使分割算法变得复杂。现有方法往往无法充分解决这些问题,因此需要更有效的解决方案。为了应对这些挑战,本文提出了一种改进的多尺度并行融合编码网络 ParaU-Net。ParaU-Net 通过优化编码过程、改进特征提取、保留向下采样信息和扩大感受野来提高分割精度和模型性能。具体来说,ParaU-Net 引入的多尺度并行融合机制能更好地捕捉结节的精细特征,并减少其他结构的干扰。在 LIDC(肺部图像数据库联盟)公共数据集上进行的实验证明了 ParaU-Net 在分割任务中的卓越性能,结果显示 IoU 为 87.15%,Dice 为 92.16%,F1-score 为 92.24%,F2-score 为 92.33%,F0.5-score 为 92.69%。这些结果明显优于其他先进的分割方法,验证了所提模型在肺结节 CT 图像分析中的有效性和准确性。代码见 https://github.com/XiaoBai-Lyq/ParaU-Net。
{"title":"ParaU-Net: An improved UNet parallel coding network for lung nodule segmentation","authors":"Yingqi Lu ,&nbsp;Xiangsuo Fan ,&nbsp;Jinfeng Wang ,&nbsp;Shaojun Chen ,&nbsp;Jie Meng","doi":"10.1016/j.jksuci.2024.102203","DOIUrl":"10.1016/j.jksuci.2024.102203","url":null,"abstract":"<div><div>Accurate segmentation of lung nodules is crucial for the early detection of lung cancer and other pulmonary diseases. Traditional segmentation methods face several challenges, such as the overlap between nodules and surrounding anatomical structures like blood vessels and bronchi, as well as the variability in nodule size and shape, which complicates the segmentation algorithms. Existing methods often inadequately address these issues, highlighting the need for a more effective solution. To address these challenges, this paper proposes an improved multi-scale parallel fusion encoding network, ParaU-Net. ParaU-Net enhances the segmentation accuracy and model performance by optimizing the encoding process, improving feature extraction, preserving down-sampling information, and expanding the receptive field. Specifically, the multi-scale parallel fusion mechanism introduced in ParaU-Net better captures the fine features of nodules and reduces interference from other structures. Experiments conducted on the LIDC (The Lung Image Database Consortium) public dataset demonstrate the excellent performance of ParaU-Net in segmentation tasks, with results showing an IoU of 87.15%, Dice of 92.16%, F1-score of 92.24%, F2-score of 92.33%, and F0.5-score of 92.69%. These results significantly outperform other advanced segmentation methods, validating the effectiveness and accuracy of the proposed model in lung nodule CT image analysis. The code is available at <span><span>https://github.com/XiaoBai-Lyq/ParaU-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102203"},"PeriodicalIF":5.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LungNeXt: A novel lightweight network utilizing enhanced mel-spectrogram for lung sound classification LungNeXt:利用增强型 Mel 光谱图进行肺音分类的新型轻量级网络
IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-10-01 DOI: 10.1016/j.jksuci.2024.102200
Fan Wang , Xiaochen Yuan , Yue Liu , Chan-Tong Lam
Lung auscultation is essential for early lung condition detection. Categorizing adventitious lung sounds requires expert discrimination by medical specialists. This paper details the features of LungNeXt, a novel classification model specifically designed for lung sound analysis. Furthermore, we propose two auxiliary methods: RandClipMix (RCM) for data augmentation and Enhanced Mel-Spectrogram for Feature Extraction (EMFE). RCM addresses the issue of data imbalance by randomly mixing clips within the same category to create new adventitious lung sounds. EMFE augments specific frequency bands in spectrograms to highlight adventitious features. These contributions enable LungNeXt to achieve outstanding performance. LungNeXt optimally integrates an appropriate number of NeXtblocks, ensuring superior performance and a lightweight model architecture. The proposed RCM and EMFE methods, along with the LungNeXt classification network, have been evaluated on the SPRSound dataset. Experimental results revealed a commendable score of 0.5699 for the lung sound five-category task on SPRSound. Specifically, the LungNeXt model is characterized by its efficiency, with only 3.804M parameters and a computational complexity of 0.659G FLOPS. This lightweight and efficient model is particularly well-suited for applications in electronic stethoscope back-end processing equipment, providing efficient diagnostic advice to physicians and patients.
肺部听诊对于早期发现肺部疾病至关重要。对肺部杂音进行分类需要医学专家的专业辨别。本文详细介绍了 LungNeXt 的特点,这是一种专为肺部声音分析而设计的新型分类模型。此外,我们还提出了两种辅助方法:用于数据增强的 RandClipMix(RCM)和用于特征提取的增强型 Mel-Spectrogram (EMFE)。RCM 通过随机混合同一类别中的片段来创建新的偶然肺音,从而解决了数据不平衡的问题。EMFE 增强了频谱图中的特定频段,以突出偶然特征。这些贡献使 LungNeXt 实现了出色的性能。LungNeXt 优化整合了适当数量的 NeXt 块,确保了卓越的性能和轻量级的模型架构。我们在 SPRSound 数据集上对所提出的 RCM 和 EMFE 方法以及 LungNeXt 分类网络进行了评估。实验结果表明,在 SPRSound 的肺部声音五类任务中取得了 0.5699 的高分。具体来说,LungNeXt 模型的特点是效率高,只有 3.804M 个参数,计算复杂度为 0.659G FLOPS。这种轻便高效的模型尤其适合应用于电子听诊器后端处理设备,为医生和患者提供高效的诊断建议。
{"title":"LungNeXt: A novel lightweight network utilizing enhanced mel-spectrogram for lung sound classification","authors":"Fan Wang ,&nbsp;Xiaochen Yuan ,&nbsp;Yue Liu ,&nbsp;Chan-Tong Lam","doi":"10.1016/j.jksuci.2024.102200","DOIUrl":"10.1016/j.jksuci.2024.102200","url":null,"abstract":"<div><div>Lung auscultation is essential for early lung condition detection. Categorizing adventitious lung sounds requires expert discrimination by medical specialists. This paper details the features of LungNeXt, a novel classification model specifically designed for lung sound analysis. Furthermore, we propose two auxiliary methods: RandClipMix (RCM) for data augmentation and Enhanced Mel-Spectrogram for Feature Extraction (EMFE). RCM addresses the issue of data imbalance by randomly mixing clips within the same category to create new adventitious lung sounds. EMFE augments specific frequency bands in spectrograms to highlight adventitious features. These contributions enable LungNeXt to achieve outstanding performance. LungNeXt optimally integrates an appropriate number of NeXtblocks, ensuring superior performance and a lightweight model architecture. The proposed RCM and EMFE methods, along with the LungNeXt classification network, have been evaluated on the SPRSound dataset. Experimental results revealed a commendable score of 0.5699 for the lung sound five-category task on SPRSound. Specifically, the LungNeXt model is characterized by its efficiency, with only 3.804M parameters and a computational complexity of 0.659G FLOPS. This lightweight and efficient model is particularly well-suited for applications in electronic stethoscope back-end processing equipment, providing efficient diagnostic advice to physicians and patients.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 8","pages":"Article 102200"},"PeriodicalIF":5.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of King Saud University-Computer and Information Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1