Pub Date : 2024-06-20DOI: 10.26599/TST.2024.9010022
Qihua Zhou;Zhili Zhou;Zhipeng Bao;Weina Niu;Yuling Liu
Since different kinds of face forgeries leave similar forgery traces in videos, learning the common features from different kinds of forged faces would achieve promising generalization ability of forgery detection. Therefore, to accurately detect known forgeries while ensuring high generalization ability of detecting unknown forgeries, we propose an intra-inter network (IIN) for face forgery detection (FFD) in videos with continual learning. The proposed IIN mainly consists of three modules, i.e., intra-module, inter-module, and forged trace masking module (FTMM). Specifically, the intra-module is trained for each kind of face forgeries by supervised learning to extract special features, while the inter-module is trained by self-supervised learning to extract the common features. As a result, the common and special features of the different forgeries are decoupled by the two feature learning modules, and then the decoupled common features can be utlized to achieve high generalization ability for FFD. Moreover, the FTMM is deployed for contrastive learning to further improve detection accuracy. The experimental results on FaceForensic++ dataset demonstrate that the proposed IIN outperforms the state-of-the-arts in FFD. Also, the generalization ability of the IIN verified on DFDC and Celeb-DF datasets demonstrates that the proposed IIN significantly improves the generalization ability for FFD.
{"title":"IIN-FFD: Intra-Inter Network for Face Forgery Detection","authors":"Qihua Zhou;Zhili Zhou;Zhipeng Bao;Weina Niu;Yuling Liu","doi":"10.26599/TST.2024.9010022","DOIUrl":"https://doi.org/10.26599/TST.2024.9010022","url":null,"abstract":"Since different kinds of face forgeries leave similar forgery traces in videos, learning the common features from different kinds of forged faces would achieve promising generalization ability of forgery detection. Therefore, to accurately detect known forgeries while ensuring high generalization ability of detecting unknown forgeries, we propose an intra-inter network (IIN) for face forgery detection (FFD) in videos with continual learning. The proposed IIN mainly consists of three modules, i.e., intra-module, inter-module, and forged trace masking module (FTMM). Specifically, the intra-module is trained for each kind of face forgeries by supervised learning to extract special features, while the inter-module is trained by self-supervised learning to extract the common features. As a result, the common and special features of the different forgeries are decoupled by the two feature learning modules, and then the decoupled common features can be utlized to achieve high generalization ability for FFD. Moreover, the FTMM is deployed for contrastive learning to further improve detection accuracy. The experimental results on FaceForensic++ dataset demonstrate that the proposed IIN outperforms the state-of-the-arts in FFD. Also, the generalization ability of the IIN verified on DFDC and Celeb-DF datasets demonstrates that the proposed IIN significantly improves the generalization ability for FFD.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 6","pages":"1839-1850"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.26599/TST.2023.9010152
Hang Luo;Lu Han;Tianping Shuai;Fengmin Wang
In this paper, we propose the Priority Facility Location Problem with Outliers (PFLPO), which is a generalization of both the Facility Location Problem with Outliers (FLPO) and Priority Facility Location Problem (PFLP). As our main contribution, we use the technique of primal-dual to provide a 3-approximation algorithm for the PFLPO. We also give two heuristic algorithms. One of them is a greedy-based algorithm and the other is a local search algorithm. Moreover, we compare the experimental results of all the proposed algorithms in order to illustrate their performance.
{"title":"Approximation and Heuristic Algorithms for the Priority Facility Location Problem with Outliers","authors":"Hang Luo;Lu Han;Tianping Shuai;Fengmin Wang","doi":"10.26599/TST.2023.9010152","DOIUrl":"https://doi.org/10.26599/TST.2023.9010152","url":null,"abstract":"In this paper, we propose the Priority Facility Location Problem with Outliers (PFLPO), which is a generalization of both the Facility Location Problem with Outliers (FLPO) and Priority Facility Location Problem (PFLP). As our main contribution, we use the technique of primal-dual to provide a 3-approximation algorithm for the PFLPO. We also give two heuristic algorithms. One of them is a greedy-based algorithm and the other is a local search algorithm. Moreover, we compare the experimental results of all the proposed algorithms in order to illustrate their performance.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 6","pages":"1694-1702"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.26599/TST.2024.9010039
Maojie Sun;Fang Dong;Zhaowu Huang;Junzhou Luo
The steel plate is one of the main products in steel industries, and its surface quality directly affects the final product performance. How to detect surface defects of steel plates in real time during the production process is a challenging problem. The single or fixed model compression method cannot be directly applied to the detection of steel surface defects, because it is difficult to consider the diversity of production tasks, the uncertainty caused by environmental factors, such as communication networks, and the influence of process and working conditions in steel plate production. In this paper, we propose an adaptive model compression method for steel surface defect online detection based on expert knowledge and working conditions. First, we establish an expert system to give lightweight model parameters based on the correlation between defect types and manufacturing processes. Then, lightweight model parameters are adaptively adjusted according to working conditions, which improves detection accuracy while ensuring real-time performance. The experimental results show that compared with the detection method of constant lightweight parameter model, the proposed method makes the total detection time cut down by 23.1%, and the deadline satisfaction ratio increased by 36.5%, while upgrading the accuracy by 4.2% and reducing the false detection rate by 4.3%.
{"title":"Adaptive Model Compression for Steel Plate Surface Defect Detection: An Expert Knowledge and Working Condition-Based Approach","authors":"Maojie Sun;Fang Dong;Zhaowu Huang;Junzhou Luo","doi":"10.26599/TST.2024.9010039","DOIUrl":"https://doi.org/10.26599/TST.2024.9010039","url":null,"abstract":"The steel plate is one of the main products in steel industries, and its surface quality directly affects the final product performance. How to detect surface defects of steel plates in real time during the production process is a challenging problem. The single or fixed model compression method cannot be directly applied to the detection of steel surface defects, because it is difficult to consider the diversity of production tasks, the uncertainty caused by environmental factors, such as communication networks, and the influence of process and working conditions in steel plate production. In this paper, we propose an adaptive model compression method for steel surface defect online detection based on expert knowledge and working conditions. First, we establish an expert system to give lightweight model parameters based on the correlation between defect types and manufacturing processes. Then, lightweight model parameters are adaptively adjusted according to working conditions, which improves detection accuracy while ensuring real-time performance. The experimental results show that compared with the detection method of constant lightweight parameter model, the proposed method makes the total detection time cut down by 23.1%, and the deadline satisfaction ratio increased by 36.5%, while upgrading the accuracy by 4.2% and reducing the false detection rate by 4.3%.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 6","pages":"1851-1871"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10565998","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.26599/TST.2024.9010007
Zeyu Xu;Jiamin Cui;Kai Hu;Meiqin Wang
FUTURE is a recently proposed lightweight block cipher that achieved a remarkable hardware performance due to careful design decisions. FUTURE is an Advanced Encryption Standard (AES)-like Substitution-Permutation Network (SPN) with 10 rounds, whose round function consists of four components, i.e., SubCell, MixColumn, ShiftRow, and AddRoundKey. Unlike AES, it is a 64-bit-size block cipher with a 128-bit secret key, and the state can be arranged into 16 cells. Therefore, the operations of FUTURE including its S-box is defined over $boldsymbol{F}_{2}^{4}$