Pub Date : 2025-12-01Epub Date: 2025-10-07DOI: 10.1080/2162402X.2025.2559784
Lucas C M Arruda, Julia Karbach, Dragan Kiselicki, Hans-Michael Altmannsberger, Evgueni Sinelnikov, Dirk Gustavus, Hans Hoffmeister, Akin Atmaca, Elke Jäger
Adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) has demonstrated consistent clinical efficacy in treating advanced melanoma and other "hot" tumors. However, it has shown limited success in "cold" tumors like glioblastoma. We present the successful treatment of a rapidly progressing glioblastoma patient with TILs expanded using a defined cytokine combination of IL-2, IL-15, and IL-21. The patient received lymphodepletion with cyclophosphamide one day pre-TIL infusion, followed by a single dose of IL-2 post-transfer. Complete tumor regression was observed after two TIL infusions administered two weeks apart. The TIL products were enriched for CD8+ T-cells and demonstrated specific lysis of the autologous tumor cell line. Transcriptomic analysis of tumor biopsies post-TIL infusion revealed increased expression of genes associated with immunological synapse formation and T-cell effector function, correlating with the patient's clinical outcome. T-cell receptor (TCR) next-generation sequencing of the infused TILs and post-treatment tumor biopsies confirmed the infiltration and expansion of TIL-derived clonotypes within the tumor microenvironment. CD8+ T-cell clonotypes exhibited robust tumor migration and expansion, while CD4+ T-cells showed limited tumor infiltration. In conclusion, TILs expanded with IL-2/IL-15/IL-21 represent a promising therapeutic approach for glioblastoma, overcoming traditional challenges posed by the tumor microenvironment and achieving significant clinical outcomes.
{"title":"Tumor-infiltrating lymphocytes-derived CD8<sup>+</sup> clonotypes infiltrate the tumor tissue and mediate tumor regression in glioblastoma.","authors":"Lucas C M Arruda, Julia Karbach, Dragan Kiselicki, Hans-Michael Altmannsberger, Evgueni Sinelnikov, Dirk Gustavus, Hans Hoffmeister, Akin Atmaca, Elke Jäger","doi":"10.1080/2162402X.2025.2559784","DOIUrl":"10.1080/2162402X.2025.2559784","url":null,"abstract":"<p><p>Adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) has demonstrated consistent clinical efficacy in treating advanced melanoma and other \"hot\" tumors. However, it has shown limited success in \"cold\" tumors like glioblastoma. We present the successful treatment of a rapidly progressing glioblastoma patient with TILs expanded using a defined cytokine combination of IL-2, IL-15, and IL-21. The patient received lymphodepletion with cyclophosphamide one day pre-TIL infusion, followed by a single dose of IL-2 post-transfer. Complete tumor regression was observed after two TIL infusions administered two weeks apart. The TIL products were enriched for CD8<sup>+</sup> T-cells and demonstrated specific lysis of the autologous tumor cell line. Transcriptomic analysis of tumor biopsies post-TIL infusion revealed increased expression of genes associated with immunological synapse formation and T-cell effector function, correlating with the patient's clinical outcome. T-cell receptor (TCR) next-generation sequencing of the infused TILs and post-treatment tumor biopsies confirmed the infiltration and expansion of TIL-derived clonotypes within the tumor microenvironment. CD8<sup>+</sup> T-cell clonotypes exhibited robust tumor migration and expansion, while CD4<sup>+</sup> T-cells showed limited tumor infiltration. In conclusion, TILs expanded with IL-2/IL-15/IL-21 represent a promising therapeutic approach for glioblastoma, overcoming traditional challenges posed by the tumor microenvironment and achieving significant clinical outcomes.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2559784"},"PeriodicalIF":6.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12505509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145239891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-05-19DOI: 10.1080/2162402X.2025.2507245
Ruth Soler-Agesta, Manuel Beltrán-Visiedo, Ai Sato, Takahiro Yamazaki, Emma Guilbaud, Christina Y Yim, Maria T Congenie, Tyler D Ames, Alberto Anel, Lorenzo Galluzzi
PT-112 is a novel small molecule exhibiting promising clinical activity in patients with solid tumors. PT-112 kills malignant cells by inhibiting ribosome biogenesis while promoting the emission of immunostimulatory signals. Accordingly, PT-112 is an authentic immunogenic cell death (ICD) inducer and synergizes with immune checkpoint inhibitors in preclinical models of mammary and colorectal carcinoma. Moreover, PT-112 monotherapy has led to durable clinical responses, some of which persisting after treatment discontinuation. Mitochondrial outer membrane permeabilization (MOMP) regulates the cytotoxicity and immunogenicity of various anticancer agents. Here, we harnessed mouse mammary carcinoma TS/A cells to test whether genetic alterations affecting MOMP influence PT-112 activity. As previously demonstrated, PT-112 elicited robust antiproliferative and cytotoxic effects against TS/A cells, which were preceded by the ICD-associated exposure of calreticulin (CALR) on the cell surface, and accompanied by the release of HMGB1 in the culture supernatant. TS/A cells responding to PT-112 also exhibited eIF2α phosphorylation and cytosolic mtDNA accumulation, secreted type I IFN, and exposed MHC Class I molecules as well as the co-inhibitory ligand PD-L1 on their surface. Acute cytotoxicity and HMGB1 release caused by PT-112 in TS/A cells were influenced by MOMP competence. Conversely, PT-112 retained antiproliferative effects and its capacity to drive type I IFN secretion as well as CALR, MHC Class I and PD-L1 exposure on the cell surface irrespective of MOMP defects. These data indicate a partial involvement of MOMP in the mechanisms of action of PT-112, suggesting that PT-112 is active across various tumor types, including malignancies with MOMP defects.
{"title":"Partial mitochondrial involvement in the antiproliferative and immunostimulatory effects of PT-112.","authors":"Ruth Soler-Agesta, Manuel Beltrán-Visiedo, Ai Sato, Takahiro Yamazaki, Emma Guilbaud, Christina Y Yim, Maria T Congenie, Tyler D Ames, Alberto Anel, Lorenzo Galluzzi","doi":"10.1080/2162402X.2025.2507245","DOIUrl":"10.1080/2162402X.2025.2507245","url":null,"abstract":"<p><p>PT-112 is a novel small molecule exhibiting promising clinical activity in patients with solid tumors. PT-112 kills malignant cells by inhibiting ribosome biogenesis while promoting the emission of immunostimulatory signals. Accordingly, PT-112 is an authentic immunogenic cell death (ICD) inducer and synergizes with immune checkpoint inhibitors in preclinical models of mammary and colorectal carcinoma. Moreover, PT-112 monotherapy has led to durable clinical responses, some of which persisting after treatment discontinuation. Mitochondrial outer membrane permeabilization (MOMP) regulates the cytotoxicity and immunogenicity of various anticancer agents. Here, we harnessed mouse mammary carcinoma TS/A cells to test whether genetic alterations affecting MOMP influence PT-112 activity. As previously demonstrated, PT-112 elicited robust antiproliferative and cytotoxic effects against TS/A cells, which were preceded by the ICD-associated exposure of calreticulin (CALR) on the cell surface, and accompanied by the release of HMGB1 in the culture supernatant. TS/A cells responding to PT-112 also exhibited eIF2α phosphorylation and cytosolic mtDNA accumulation, secreted type I IFN, and exposed MHC Class I molecules as well as the co-inhibitory ligand PD-L1 on their surface. Acute cytotoxicity and HMGB1 release caused by PT-112 in TS/A cells were influenced by MOMP competence. Conversely, PT-112 retained antiproliferative effects and its capacity to drive type I IFN secretion as well as CALR, MHC Class I and PD-L1 exposure on the cell surface irrespective of MOMP defects. These data indicate a partial involvement of MOMP in the mechanisms of action of PT-112, suggesting that PT-112 is active across various tumor types, including malignancies with MOMP defects.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2507245"},"PeriodicalIF":6.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091903/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144095303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-06-04DOI: 10.1080/2162402X.2025.2515176
Giulia Cerrato, Allan Sauvat, Mahmoud Abdellatif, Guido Kroemer
Aclarubicin (also called aclacinomycin A) is an antineoplastic from the anthracycline class that is used in China and Japan but not in Europe nor in the USA. Aclarubicin induces much less DNA damage than the classical anthracyclines doxorubicin, daunorubicin, epirubicin, idarubicin, and the anthracene mitoxantrone, but is equally effective in inhibiting DNA-to-RNA transcription and in eliciting immunogenic stress in malignant cells. Accordingly, aclarubicin lacks the DNA damage-associated cardiotoxicity that is dose-limiting for classical anthracyclines. Conversely, aclarubicin is at least as potent as other anthracyclines in inducing immunogenic cell death (ICD), which is key for the mode of action of efficient chemotherapeutics. This combination of reduced toxicity and equivalent ICD-stimulatory activity may explain why, as compared to other anthracyclines, aclarubicin is particularly efficient against acute myeloid leukemia. As a result, we advocate for clinical studies seeking to replace the anthracyclines used in Western medicine by aclarubicin-like compounds. Such clinical studies should not only embrace hematological malignancies but should also concern solid cancers, including those in which ICD-inducing chemotherapies are followed by immunotherapies targeting the PD-1/PD-L1 interaction.
{"title":"Potent immune-dependent anticancer effects of the non-cardiotoxic anthracycline aclarubicin.","authors":"Giulia Cerrato, Allan Sauvat, Mahmoud Abdellatif, Guido Kroemer","doi":"10.1080/2162402X.2025.2515176","DOIUrl":"10.1080/2162402X.2025.2515176","url":null,"abstract":"<p><p>Aclarubicin (also called aclacinomycin A) is an antineoplastic from the anthracycline class that is used in China and Japan but not in Europe nor in the USA. Aclarubicin induces much less DNA damage than the classical anthracyclines doxorubicin, daunorubicin, epirubicin, idarubicin, and the anthracene mitoxantrone, but is equally effective in inhibiting DNA-to-RNA transcription and in eliciting immunogenic stress in malignant cells. Accordingly, aclarubicin lacks the DNA damage-associated cardiotoxicity that is dose-limiting for classical anthracyclines. Conversely, aclarubicin is at least as potent as other anthracyclines in inducing immunogenic cell death (ICD), which is key for the mode of action of efficient chemotherapeutics. This combination of reduced toxicity and equivalent ICD-stimulatory activity may explain why, as compared to other anthracyclines, aclarubicin is particularly efficient against acute myeloid leukemia. As a result, we advocate for clinical studies seeking to replace the anthracyclines used in Western medicine by aclarubicin-like compounds. Such clinical studies should not only embrace hematological malignancies but should also concern solid cancers, including those in which ICD-inducing chemotherapies are followed by immunotherapies targeting the PD-1/PD-L1 interaction.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2515176"},"PeriodicalIF":6.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-07-07DOI: 10.1080/2162402X.2025.2528109
Lizao Zhang, Siqi Ren, Tianjun Lan, Ventin Marco, Niu Liu, Bin Wei, Yunsheng Chen, Jiaying Wu, Qunxing Li, Fan Wu, Peichia Lu, Jiahao Miao, Hsinyu Lin, Xinhui Wang, Jianglong Zhong, Jinsong Li, Song Fan
Mature tertiary lymphoid structures (TLSs) are immune aggregates associated with immune checkpoint blockade (ICB) responses in various cancers, yet their role in chemoimmunotherapy response in head and neck squamous cell carcinoma (HNSCC) remains unclear. By analyzing TCGA-HNSC transcriptomic data and pathology slides, we identified an immune subtype enriched in TLSs, predominantly in HPV-positive tumors, which correlated with favorable immunotherapy response. Single-cell and spatial transcriptomics further revealed distinct TLS compositions, with mature TLSs enriched in germinal center B cells, follicular helper T cells, and resident memory CD8 T cells, while immature TLSs contained FCRL4+ B cells and peripheral helper T cells. Multispectral immunohistochemistry, flow cytometry, and ELISA validated these findings. Notably, neoadjuvant chemoimmunotherapy promoted mature TLS formation. These results suggest that TLS maturity correlates with HPV status and response to anti-PD-1-based chemoimmunotherapy, providing insights for potential therapeutic strategies in HNSCC.
{"title":"Mature tertiary lymphoid structures linked to HPV status and anti-PD-1 based chemoimmunotherapy response in head and neck squamous cell carcinoma.","authors":"Lizao Zhang, Siqi Ren, Tianjun Lan, Ventin Marco, Niu Liu, Bin Wei, Yunsheng Chen, Jiaying Wu, Qunxing Li, Fan Wu, Peichia Lu, Jiahao Miao, Hsinyu Lin, Xinhui Wang, Jianglong Zhong, Jinsong Li, Song Fan","doi":"10.1080/2162402X.2025.2528109","DOIUrl":"10.1080/2162402X.2025.2528109","url":null,"abstract":"<p><p>Mature tertiary lymphoid structures (TLSs) are immune aggregates associated with immune checkpoint blockade (ICB) responses in various cancers, yet their role in chemoimmunotherapy response in head and neck squamous cell carcinoma (HNSCC) remains unclear. By analyzing TCGA-HNSC transcriptomic data and pathology slides, we identified an immune subtype enriched in TLSs, predominantly in HPV-positive tumors, which correlated with favorable immunotherapy response. Single-cell and spatial transcriptomics further revealed distinct TLS compositions, with mature TLSs enriched in germinal center B cells, follicular helper T cells, and resident memory CD8 T cells, while immature TLSs contained FCRL4+ B cells and peripheral helper T cells. Multispectral immunohistochemistry, flow cytometry, and ELISA validated these findings. Notably, neoadjuvant chemoimmunotherapy promoted mature TLS formation. These results suggest that TLS maturity correlates with HPV status and response to anti-PD-1-based chemoimmunotherapy, providing insights for potential therapeutic strategies in HNSCC.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2528109"},"PeriodicalIF":6.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239792/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144576642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-07-01DOI: 10.1080/2162402X.2025.2521396
Chiara Lattanzi, Francisco Bianchetto-Aguilera, Marta Donini, Francesca Pettinella, Elena Caveggion, Monica Castellucci, Sara Gasperini, Barbara Mariotti, Ilaria Signoretto, Maurizio Cantini, Sara Pilotto, Lorenzo Belluomini, Cristina Tecchio, Flavia Bazzoni, Sven Brandau, Nicola Tamassia, Marco A Cassatella, Patrizia Scapini
Human polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) consist of circulating low-density neutrophils (LDNs) characterized by the ability to inhibit T-cell responses. In previous studies, we demonstrated that the mature fraction of PMN-MDSCs (i.e. mPMN-MDSCs) exerts more potent immunosuppressive functions than its immature counterpart. More recently, we defined a specific gene signature of mPMN-MDSCs from cancer patients and G-CSF-treated donors (GDs) by bulk RNA sequencing (RNA-seq) experiments. In this study, by performing single-cell RNA-seq (scRNA-seq) experiments of circulating mPMN-MDSCs from non-small cell lung cancer (NSCLC) patients, we identified a major scRNA-seq cell cluster (arbitrarily named NSCLC c6) specifically displaying immunosuppressive and protumor transcriptomic features. Then, by analyzing publicly available scRNA-seq datasets from human tumor-associated neutrophils (TANs), we uncovered three TAN clusters (arbitrarily named TAN c6-c8) that were found to share with NSCLC c6 several common genes and transcription factor (TF) regulons associated with response to hypoxia, positive regulation of angiogenesis, and metabolic reprogramming. Furthermore, by performing scRNA-seq experiments of GD mPMN-MDSCs, we uncovered four scRNA-seq cell clusters (arbitrarily named GD c4-c7) that were enriched for the same genes and pathways characterizing NSCLC c6 and TAN c6-c8 cells. Altogether, these data uncover that human circulating mPMN-MDSCs and TANs from different cancer types share scRNA-seq cell clusters with transcriptomic similarities, supporting the notion that they might be strictly related.
{"title":"Uncovering common transcriptional features shared by mature peripheral blood PMN-MDSCs and tumor-infiltrating neutrophils in humans.","authors":"Chiara Lattanzi, Francisco Bianchetto-Aguilera, Marta Donini, Francesca Pettinella, Elena Caveggion, Monica Castellucci, Sara Gasperini, Barbara Mariotti, Ilaria Signoretto, Maurizio Cantini, Sara Pilotto, Lorenzo Belluomini, Cristina Tecchio, Flavia Bazzoni, Sven Brandau, Nicola Tamassia, Marco A Cassatella, Patrizia Scapini","doi":"10.1080/2162402X.2025.2521396","DOIUrl":"10.1080/2162402X.2025.2521396","url":null,"abstract":"<p><p>Human polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs) consist of circulating low-density neutrophils (LDNs) characterized by the ability to inhibit T-cell responses. In previous studies, we demonstrated that the mature fraction of PMN-MDSCs (i.e. mPMN-MDSCs) exerts more potent immunosuppressive functions than its immature counterpart. More recently, we defined a specific gene signature of mPMN-MDSCs from cancer patients and G-CSF-treated donors (GDs) by bulk RNA sequencing (RNA-seq) experiments. In this study, by performing single-cell RNA-seq (scRNA-seq) experiments of circulating mPMN-MDSCs from non-small cell lung cancer (NSCLC) patients, we identified a major scRNA-seq cell cluster (arbitrarily named NSCLC c6) specifically displaying immunosuppressive and protumor transcriptomic features. Then, by analyzing publicly available scRNA-seq datasets from human tumor-associated neutrophils (TANs), we uncovered three TAN clusters (arbitrarily named TAN c6-c8) that were found to share with NSCLC c6 several common genes and transcription factor (TF) regulons associated with response to hypoxia, positive regulation of angiogenesis, and metabolic reprogramming. Furthermore, by performing scRNA-seq experiments of GD mPMN-MDSCs, we uncovered four scRNA-seq cell clusters (arbitrarily named GD c4-c7) that were enriched for the same genes and pathways characterizing NSCLC c6 and TAN c6-c8 cells. Altogether, these data uncover that human circulating mPMN-MDSCs and TANs from different cancer types share scRNA-seq cell clusters with transcriptomic similarities, supporting the notion that they might be strictly related.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2521396"},"PeriodicalIF":6.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12218443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144545705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-08-18DOI: 10.1080/2162402X.2025.2542333
Dana Cholujova, Gabor Beke, Lubos Klucar, Lubos Drgona, Zuzana Valuskova, Merav Leiba, Efstathios Kastritis, David M Dorfman, Kenneth C Anderson, Jana Jakubikova
Multiple myeloma (MM) orchestrates a profound disruption of immune balance within the bone marrow (BM) microenvironment, driving disease progression and therapeutic resistance. To better understand these complex immune dynamics, we used high-dimensional mass cytometry (CyTOF) profiling to comprehensively characterize the immune landscape of the BM across different stages of myeloma progression, including MGUS (n = 16), smoldering MM (SMM; n = 25), and active MM, both newly diagnosed (n = 43) and relapsed/refractory (n = 104). Our analysis revealed substantial immune remodeling during disease progression, characterized by adaptive immune suppression and extensive infiltration of innate immune populations. Transformation from MGUS to SMM was marked by significant alterations in central and effector memory T helper cells, effector cytotoxic T cells, and an enrichment of monocytic and neutrophil subsets. Active MM stages were further distinguished by increased expansion of myeloid and monocytic lineages, alongside a pronounced reduction in progenitor and transitional B cells. Correspondence analysis demonstrated that specific immune profiles were significantly associated with clinical outcomes, including progression-free survival and overall survival. This study highlights the potential of CyTOF-based molecular profiling to unravel the intricate immune dynamics of the BM microenvironment across MM disease stages, enhancing our understanding of MM pathogenesis and providing a foundation for identifying prognostic biomarkers and tailoring precision immunotherapeutic strategies.
{"title":"CyTOF profiling of bone marrow immune dynamics across myeloma stages.","authors":"Dana Cholujova, Gabor Beke, Lubos Klucar, Lubos Drgona, Zuzana Valuskova, Merav Leiba, Efstathios Kastritis, David M Dorfman, Kenneth C Anderson, Jana Jakubikova","doi":"10.1080/2162402X.2025.2542333","DOIUrl":"10.1080/2162402X.2025.2542333","url":null,"abstract":"<p><p>Multiple myeloma (MM) orchestrates a profound disruption of immune balance within the bone marrow (BM) microenvironment, driving disease progression and therapeutic resistance. To better understand these complex immune dynamics, we used high-dimensional mass cytometry (CyTOF) profiling to comprehensively characterize the immune landscape of the BM across different stages of myeloma progression, including MGUS (<i>n</i> = 16), smoldering MM (SMM; <i>n</i> = 25), and active MM, both newly diagnosed (<i>n</i> = 43) and relapsed/refractory (<i>n</i> = 104). Our analysis revealed substantial immune remodeling during disease progression, characterized by adaptive immune suppression and extensive infiltration of innate immune populations. Transformation from MGUS to SMM was marked by significant alterations in central and effector memory T helper cells, effector cytotoxic T cells, and an enrichment of monocytic and neutrophil subsets. Active MM stages were further distinguished by increased expansion of myeloid and monocytic lineages, alongside a pronounced reduction in progenitor and transitional B cells. Correspondence analysis demonstrated that specific immune profiles were significantly associated with clinical outcomes, including progression-free survival and overall survival. This study highlights the potential of CyTOF-based molecular profiling to unravel the intricate immune dynamics of the BM microenvironment across MM disease stages, enhancing our understanding of MM pathogenesis and providing a foundation for identifying prognostic biomarkers and tailoring precision immunotherapeutic strategies.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2542333"},"PeriodicalIF":6.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144876219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CAR-based cell therapies have shown clinical success in treating various cancers, with CAR T cell therapies entering the clinical route and CAR NK cell therapies being evaluated in early-stage clinical trials. A key challenge is the presence of tumor-associated antigens on healthy cells, risking on-target off-tumor toxicities. Our comparative analysis of CAR T and CAR NK cells targeting the multiple myeloma-associated antigens BCMA, SLAMF7, and CD38 revealed that antigen density on target cells significantly modulates CAR NK cell activation and cytotoxicity. The cytotoxic potential of CAR NK cells was comparable to that of CAR T cells when targeting BCMA and CD38, but notable differences were observed in SLAMF7-directed CAR cells. While CAR sensitivity was similar in both cell types, CAR NK cell activity was balanced by inhibitory receptors like KIRs and NKG2A. This balance allows effective tumor control while potentially reducing on-target off-tumor effects on healthy cells with low antigen expression. Consequently, CAR NK cells offer greater flexibility in target antigen selection, potentially expanding the range of targetable antigens for cancer immunotherapy.
{"title":"Divergent on-target off-tumor effects by CAR T and CAR NK cells suggest different efficacy and safety of cell therapies.","authors":"Katharina Schindler-Wnek, Anika Stahringer, Nadine Heimer, Ulrike Koehl, Stephan Fricke, Dominik Schmiedel","doi":"10.1080/2162402X.2025.2546443","DOIUrl":"10.1080/2162402X.2025.2546443","url":null,"abstract":"<p><p>CAR-based cell therapies have shown clinical success in treating various cancers, with CAR T cell therapies entering the clinical route and CAR NK cell therapies being evaluated in early-stage clinical trials. A key challenge is the presence of tumor-associated antigens on healthy cells, risking on-target off-tumor toxicities. Our comparative analysis of CAR T and CAR NK cells targeting the multiple myeloma-associated antigens BCMA, SLAMF7, and CD38 revealed that antigen density on target cells significantly modulates CAR NK cell activation and cytotoxicity. The cytotoxic potential of CAR NK cells was comparable to that of CAR T cells when targeting BCMA and CD38, but notable differences were observed in SLAMF7-directed CAR cells. While CAR sensitivity was similar in both cell types, CAR NK cell activity was balanced by inhibitory receptors like KIRs and NKG2A. This balance allows effective tumor control while potentially reducing on-target off-tumor effects on healthy cells with low antigen expression. Consequently, CAR NK cells offer greater flexibility in target antigen selection, potentially expanding the range of targetable antigens for cancer immunotherapy.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2546443"},"PeriodicalIF":6.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145001706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T cells recognize peptides presented by human leukocyte antigen molecules on the cell surface, enabling the immune surveillance of pathological conditions such as cancer. Cancer-testis (CT) antigens are promising targets for cancer immunotherapy because of their restricted expression in normal tissues. In this study, we performed antigen screening of T cell receptors isolated from tumor-infiltrating lymphocytes (TILs) in acral melanoma, using cDNA expression cloning and identified a novel CT antigenic epitope encoded by MAGE-A6 with a single nucleotide polymorphism (SNP). This SNP conferred immunogenicity to the epitope, eliciting a robust immune response against tumor cells. While antigen identification has increasingly relied on reverse immunology approaches using reference sequences that do not contain SNPs, forward immunology approaches, such as cDNA expression cloning, directly identify antigens recognized by T cells exhibiting immune responses, enabling the detection of SNP-derived epitopes. Furthermore, in hot tumors such as acral melanoma that are characterized by a low tumor mutational burden, but high TIL infiltration, TILs predominantly respond to shared antigens with high immunogenicity. These findings underscore the utility of forward immunology in antigen discovery and highlight the potential of SNP-dependent tumor antigens in cancer immunotherapy.
{"title":"An SNP-dependent cancer-testis antigenic epitope serves as a promising immunotherapeutic target for cancer.","authors":"Kenji Murata, Tomoyuki Minowa, Tomohide Tsukahara, Taku Yoshida, Akiko Minami, Munehide Nakatsugawa, Yuka Mizue, Aiko Murai, Serina Tokita, Kenta Sasaki, Hisashi Uhara, Terufumi Kubo, Takayuki Kanaseki, Toshihiko Torigoe, Yoshihiko Hirohashi","doi":"10.1080/2162402X.2025.2528110","DOIUrl":"10.1080/2162402X.2025.2528110","url":null,"abstract":"<p><p>T cells recognize peptides presented by human leukocyte antigen molecules on the cell surface, enabling the immune surveillance of pathological conditions such as cancer. Cancer-testis (CT) antigens are promising targets for cancer immunotherapy because of their restricted expression in normal tissues. In this study, we performed antigen screening of T cell receptors isolated from tumor-infiltrating lymphocytes (TILs) in acral melanoma, using cDNA expression cloning and identified a novel CT antigenic epitope encoded by <i>MAGE-A6</i> with a single nucleotide polymorphism (SNP). This SNP conferred immunogenicity to the epitope, eliciting a robust immune response against tumor cells. While antigen identification has increasingly relied on reverse immunology approaches using reference sequences that do not contain SNPs, forward immunology approaches, such as cDNA expression cloning, directly identify antigens recognized by T cells exhibiting immune responses, enabling the detection of SNP-derived epitopes. Furthermore, in hot tumors such as acral melanoma that are characterized by a low tumor mutational burden, but high TIL infiltration, TILs predominantly respond to shared antigens with high immunogenicity. These findings underscore the utility of forward immunology in antigen discovery and highlight the potential of SNP-dependent tumor antigens in cancer immunotherapy.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2528110"},"PeriodicalIF":6.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243901/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144592698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-01Epub Date: 2025-12-18DOI: 10.1080/2162402X.2025.2601394
Britney Niemann, Abby Ivey, Quinn Hopen, Duaa Dakhlallah, Kathleen Brundage, Nicole Mihalik, Timothy Eubank, Brian A Boone
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor survival. The immunosuppressive tumor microenvironment (TME) drives resistance to therapy, including immunotherapy. This may be, in part, mediated by the formation of neutrophil extracellular traps (NETs), formed when neutrophils release their intracellular contents. NETs are elevated in PDAC and are associated with nearly every stage of tumor progression. We investigated the influence of NETs on the PDAC TME and immunotherapy response. An orthotopic PDAC model was utilized in C57BJ6 or PAD4-/- mice receiving one of the following: control, DNase, anti-PD-1 therapy, or DNase and anti-PD-1. NET markers, fibrosis, and the TME immune profile were evaluated. Human PDAC patients were also evaluated for levels of NETs and tumor-infiltrating T cells. Circulating NET markers correlated with intra-tumoral CD8+ cells in PDAC patients. Patients with high NET levels also experienced more post-operative complications. NET inhibition in mice reduced tumor growth and enhanced survival. Decreased expression of collagen and matrix metalloproteinase (MMP) genes, as well as reduced intra-tumoral collagen deposition were found in NET deficient mice. Additionally, an increase in TCF1+PD-1+CD44+CD8+ progenitor T cells, a subpopulation of T cells responsive to immunotherapy, were identified. These changes resulted in further tumor burden reduction and prolonged survival when anti-PD-1 therapy was given in conjunction with NET inhibition. NETs influence extracellular matrix remodeling and the T cell response to PDAC, allowing for a significant response to anti-PD-1 therapy. These findings support the combination therapy of immunotherapy and NET inhibition in patients with PDAC.
{"title":"<b>Neutrophil extracellular trap inhibition revitalizes PDAC immunotherapy responsiveness via reduced fibrosis and TCF1</b><sup><b>+</b></sup><b>CD8</b><sup><b>+</b></sup> <b>progenitor T-cell expansion</b>.","authors":"Britney Niemann, Abby Ivey, Quinn Hopen, Duaa Dakhlallah, Kathleen Brundage, Nicole Mihalik, Timothy Eubank, Brian A Boone","doi":"10.1080/2162402X.2025.2601394","DOIUrl":"https://doi.org/10.1080/2162402X.2025.2601394","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor survival. The immunosuppressive tumor microenvironment (TME) drives resistance to therapy, including immunotherapy. This may be, in part, mediated by the formation of neutrophil extracellular traps (NETs), formed when neutrophils release their intracellular contents. NETs are elevated in PDAC and are associated with nearly every stage of tumor progression. We investigated the influence of NETs on the PDAC TME and immunotherapy response. An orthotopic PDAC model was utilized in C57BJ6 or PAD4<sup>-/-</sup> mice receiving one of the following: control, DNase, anti-PD-1 therapy, or DNase and anti-PD-1. NET markers, fibrosis, and the TME immune profile were evaluated. Human PDAC patients were also evaluated for levels of NETs and tumor-infiltrating T cells. Circulating NET markers correlated with intra-tumoral CD8<sup>+</sup> cells in PDAC patients. Patients with high NET levels also experienced more post-operative complications. NET inhibition in mice reduced tumor growth and enhanced survival. Decreased expression of collagen and matrix metalloproteinase (MMP) genes, as well as reduced intra-tumoral collagen deposition were found in NET deficient mice. Additionally, an increase in TCF1<sup>+</sup>PD-1<sup>+</sup>CD44<sup>+</sup>CD8<sup>+</sup> progenitor T cells, a subpopulation of T cells responsive to immunotherapy, were identified. These changes resulted in further tumor burden reduction and prolonged survival when anti-PD-1 therapy was given in conjunction with NET inhibition. NETs influence extracellular matrix remodeling and the T cell response to PDAC, allowing for a significant response to anti-PD-1 therapy. These findings support the combination therapy of immunotherapy and NET inhibition in patients with PDAC.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"14 1","pages":"2601394"},"PeriodicalIF":6.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145783467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}