Pub Date : 2024-09-11DOI: 10.1016/j.dark.2024.101645
Rong-Jia Yang , Yong-Ben Shi
We consider baryogenesis in quantum fluctuation modified gravity. We explore three forms (two are newly proposed here) of baryogenesis interaction and discuss the effect of these interaction terms on the baryon-to-entropy ratio during the radiation era of the expanding universe. We constrain the model parameters with the current observational data, implying that this modified gravity is capable to address the issue of baryon asymmetry in a successful manner.
{"title":"Baryogenesis in quantum fluctuation modified gravity","authors":"Rong-Jia Yang , Yong-Ben Shi","doi":"10.1016/j.dark.2024.101645","DOIUrl":"10.1016/j.dark.2024.101645","url":null,"abstract":"<div><p>We consider baryogenesis in quantum fluctuation modified gravity. We explore three forms (two are newly proposed here) of baryogenesis interaction and discuss the effect of these interaction terms on the baryon-to-entropy ratio during the radiation era of the expanding universe. We constrain the model parameters with the current observational data, implying that this modified gravity is capable to address the issue of baryon asymmetry in a successful manner.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101645"},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1016/j.dark.2024.101649
Lu Yin
The 21-cm signal is the most important measurement for us to understand physics during cosmic dawn. It is the key for us to understand the expansion history of the Universe and the nature of dark energy. In this paper, we focused on the characteristic 21-cm power spectrum of a special dynamic dark energy – the Interacting Chevallier-Polarski-Linder (ICPL) model – and compared it with those of the CDM and CPL models. From the expected noise of HERA, we found more precise experiments in the future can detect the features of interacting dark energy in the 21-cm power spectra. By studying the brightness temperature, we found the ICPL model is closer to the observation of EDGES compared to the CDM, thus alleviating the tension between theory and experiments.
{"title":"Cosmic-dawn 21-cm signal from dynamical dark energy","authors":"Lu Yin","doi":"10.1016/j.dark.2024.101649","DOIUrl":"10.1016/j.dark.2024.101649","url":null,"abstract":"<div><p>The 21-cm signal is the most important measurement for us to understand physics during cosmic dawn. It is the key for us to understand the expansion history of the Universe and the nature of dark energy. In this paper, we focused on the characteristic 21-cm power spectrum of a special dynamic dark energy – the Interacting Chevallier-Polarski-Linder (ICPL) model – and compared it with those of the <span><math><mi>Λ</mi></math></span>CDM and CPL models. From the expected noise of HERA, we found more precise experiments in the future can detect the features of interacting dark energy in the 21-cm power spectra. By studying the brightness temperature, we found the ICPL model is closer to the observation of EDGES compared to the <span><math><mi>Λ</mi></math></span>CDM, thus alleviating the tension between theory and experiments.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101649"},"PeriodicalIF":5.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.dark.2024.101635
Guangjun Nan , M. Zeeshan Gul , M. Sharif , Adeeba Arooj
The main aim of this manuscript is to analyze the viability and stability of pulsars filled with charged anisotropic matter configuration in extended symmetric teleparallel theory. A particular model of this gravitational theory is considered to reduce the complexity of the system and formulate the explicit field equations which govern the interaction between matter and geometry. The configuration of static spherical symmetric structures is examined through the non-singular viable solutions. The undetermined constants in the metric coefficients are determined by the Darmois junction conditions. Further, we explore different physical characteristics in the interior of charged pulsars to check their viability. The equilibrium state of the charged stellar objects is discussed using the Tolman–Oppenheimer–Volkoff equation and the stability is examined by the causality condition, Herrera cracking approach and adiabatic index, respectively. Our findings indicate that the proposed charged stars in this modified gravity are physically viable and stable.
{"title":"A comprehensive analysis of charged pulsars and cracking condition","authors":"Guangjun Nan , M. Zeeshan Gul , M. Sharif , Adeeba Arooj","doi":"10.1016/j.dark.2024.101635","DOIUrl":"10.1016/j.dark.2024.101635","url":null,"abstract":"<div><p>The main aim of this manuscript is to analyze the viability and stability of pulsars filled with charged anisotropic matter configuration in extended symmetric teleparallel theory. A particular model of this gravitational theory is considered to reduce the complexity of the system and formulate the explicit field equations which govern the interaction between matter and geometry. The configuration of static spherical symmetric structures is examined through the non-singular viable solutions. The undetermined constants in the metric coefficients are determined by the Darmois junction conditions. Further, we explore different physical characteristics in the interior of charged pulsars to check their viability. The equilibrium state of the charged stellar objects is discussed using the Tolman–Oppenheimer–Volkoff equation and the stability is examined by the causality condition, Herrera cracking approach and adiabatic index, respectively. Our findings indicate that the proposed charged stars in this modified gravity are physically viable and stable.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101635"},"PeriodicalIF":5.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142233007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1016/j.dark.2024.101643
Bruce Hoeneisen
We fit the solution of hydrostatic equations to the observed total and baryonic mass densities and of 23 massive elliptical galaxies. Our purpose is to investigate how well these measurements constrain the cusp or core of elliptical galaxies, and the dark matter comoving temperature-to-mass ratio, or equivalently, the adiabatic invariant , of dark matter. These studies reinforce the view that the lower bound of the measured distribution of the comoving thermal velocity is of cosmological origin, in agreement with studies of spiral and dwarf galaxies.
{"title":"Understanding elliptical galaxies with warm dark matter","authors":"Bruce Hoeneisen","doi":"10.1016/j.dark.2024.101643","DOIUrl":"10.1016/j.dark.2024.101643","url":null,"abstract":"<div><p>We fit the solution of hydrostatic equations to the observed total and baryonic mass densities <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mtext>tot</mtext></mrow></msub><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> of 23 massive elliptical galaxies. Our purpose is to investigate how well these measurements constrain the cusp or core of elliptical galaxies, and the dark matter comoving temperature-to-mass ratio, or equivalently, the adiabatic invariant <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>h</mi><mtext>rms</mtext></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, of dark matter. These studies reinforce the view that the lower bound of the measured distribution of the comoving thermal velocity <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>h</mi><mtext>rms</mtext></mrow></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is of cosmological origin, in agreement with studies of spiral and dwarf galaxies.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101643"},"PeriodicalIF":5.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212686424002255/pdfft?md5=971bf6468212caabb22462cdad59ae15&pid=1-s2.0-S2212686424002255-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-07DOI: 10.1016/j.dark.2024.101639
Lakhan V. Jaybhaye, Raja Solanki, P.K. Sahoo
This paper explores the rapid expansion of the Universe during its later stages within the context of gravity theory. We present a novel parametrization of the Hubble parameter in a manner independent of any specific model and employ it to analyze the Friedmann equations within the FLRW Universe framework. Using a Markov Chain Monte Carlo (MCMC) approach, we derive the model parameters by analyzing a composite dataset comprising 31 Cosmic Chronometers (CC) data points, 26 independent Baryonic Acoustic Oscillations (BAO) measurements, and 1701 data points from Pantheon+SH0ES dataset. The trajectory of the deceleration parameter highlights the shift from deceleration to acceleration in the evolution of the Universe. Additionally, we delve into the dynamics of fundamental cosmological variables for two nonlinear models, including energy density, pressure, equation of state (EoS) parameter, and energy conditions.
{"title":"Late time cosmic acceleration through parametrization of Hubble parameter in f(R,Lm) gravity","authors":"Lakhan V. Jaybhaye, Raja Solanki, P.K. Sahoo","doi":"10.1016/j.dark.2024.101639","DOIUrl":"10.1016/j.dark.2024.101639","url":null,"abstract":"<div><p>This paper explores the rapid expansion of the Universe during its later stages within the context of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> gravity theory. We present a novel parametrization of the Hubble parameter in a manner independent of any specific model and employ it to analyze the Friedmann equations within the FLRW Universe framework. Using a Markov Chain Monte Carlo (MCMC) approach, we derive the model parameters by analyzing a composite dataset comprising 31 Cosmic Chronometers (CC) data points, 26 independent Baryonic Acoustic Oscillations (BAO) measurements, and 1701 data points from Pantheon+SH0ES dataset. The trajectory of the deceleration parameter highlights the shift from deceleration to acceleration in the evolution of the Universe. Additionally, we delve into the dynamics of fundamental cosmological variables for two nonlinear <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> models, including energy density, pressure, equation of state (EoS) parameter, and energy conditions.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101639"},"PeriodicalIF":5.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1016/j.dark.2024.101642
Misba Afrin , Sushant G. Ghosh , Anzhong Wang
A general covariant Einstein–Gauss–Bonnet Gravity in Four-Dimensional (4D EGB) spacetime is shown to bypass Lovelock’s theorem and is free from Ostrogradsky instability. Meanwhile, the bumblebee theory is a vector–tensor theory. It extends the Einstein–Maxwell theory that allows for the spontaneous symmetry breaking that leads to the field acquiring a vacuum expectation value, introducing Lorentz violation into the system. We investigate rotating black holes in the 4D EGB-bumblebee gravity model where Lorentz symmetry is spontaneously broken – Kerr EGB bumblebee (KEGBB) black holes. The latest observations from the Event Horizon Telescope (EHT) of the supermassive black holes (SMBHs) M87* and Sgr A* have sparked intensified interest in the study of black hole shadows, which present a novel avenue for investigating SMBHs within the strong-field regime. Motivated by this, we model SMBHs M87* and Sgr A* as KEGBB black holes, and using the EHT observation result, for given , to find earlier upper limits on the and are altered. The KEGBB and Kerr black holes are indiscernible in some parameter space, and one cannot rule out the possibility that the former may serve as strong candidates for astrophysical black holes. Employing our newly developed parameter estimation technique, we use two EHT observables – namely, the angular diameter of the shadow, , and the axial ratio, – to estimate parameters of M87* and Sgr A* taking into account observational errors associated with the EHT results.
{"title":"Testing EGB gravity coupled to bumblebee field and black hole parameter estimation with EHT observations","authors":"Misba Afrin , Sushant G. Ghosh , Anzhong Wang","doi":"10.1016/j.dark.2024.101642","DOIUrl":"10.1016/j.dark.2024.101642","url":null,"abstract":"<div><p>A general covariant Einstein–Gauss–Bonnet Gravity in Four-Dimensional (4D EGB) spacetime is shown to bypass Lovelock’s theorem and is free from Ostrogradsky instability. Meanwhile, the bumblebee theory is a vector–tensor theory. It extends the Einstein–Maxwell theory that allows for the spontaneous symmetry breaking that leads to the field acquiring a vacuum expectation value, introducing Lorentz violation into the system. We investigate rotating black holes in the 4D EGB-bumblebee gravity model where Lorentz symmetry is spontaneously broken – Kerr EGB bumblebee (KEGBB) black holes. The latest observations from the <em>Event Horizon Telescope</em> (<em>EHT</em>) of the supermassive black holes (SMBHs) M87* and Sgr A* have sparked intensified interest in the study of black hole shadows, which present a novel avenue for investigating SMBHs within the strong-field regime. Motivated by this, we model SMBHs M87* and Sgr A* as KEGBB black holes, and using the EHT observation result, for given <span><math><mi>l</mi></math></span>, to find earlier upper limits on the <span><math><mi>α</mi></math></span> and <span><math><mi>a</mi></math></span> are altered. The KEGBB and Kerr black holes are indiscernible in some parameter space, and one cannot rule out the possibility that the former may serve as strong candidates for astrophysical black holes. Employing our newly developed parameter estimation technique, we use two EHT observables – namely, the angular diameter of the shadow, <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub></math></span>, and the axial ratio, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> – to estimate parameters of M87* and Sgr A* taking into account observational errors associated with the EHT results.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101642"},"PeriodicalIF":5.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1016/j.dark.2024.101640
Y. Kalpana Devi, S.A. Narawade, B. Mishra
<div><p>In the paper, we present an accelerating cosmological model in <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> gravity with the parameter constrained through the cosmological data sets. At the beginning, we have employed a functional form of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>α</mi><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>β</mi></mrow></msubsup></mrow></math></span>, where <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> are model parameters. This model is well motivated from the Starobinsky model in <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity and the power law form of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. The Hubble parameter has been derived with some algebraic manipulation and constrained by Hubble data and Pantheon<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> data. With the constraint parameters, present value of deceleration parameter has been obtained to as <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>63</mn></mrow></math></span> with the transition at <span><math><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span>. It shows the early deceleration and late time acceleration behaviour. The present value of other geometric parameters such as the jerk and snap parameter are obtained to be <span><math><mrow><msub><mrow><mi>j</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>78</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span> respectively. The state finder diagnostic test gives the quintessence behaviour at present and converging to <span><math><mi>Λ</mi></math></span>CDM at late times. Moreover the <span><math><mrow><mi>O</mi><mi>m</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> diagnostics gives negative slope which shows that the model favours the state finder diagnostic result. Also the current age of Universe has been obtained as, <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>13</mn><mo>.</mo><mn>64</mn><mspace></mspace><mspace></mspace><mi>G</mi><mi>y</mi><mi>r</mi><mi>s</mi></mrow></math></span>. The equation of state parameter also shows the quintessence behaviour. Bas
{"title":"Constraining parameters for the accelerating universe in f(R,Lm) gravity","authors":"Y. Kalpana Devi, S.A. Narawade, B. Mishra","doi":"10.1016/j.dark.2024.101640","DOIUrl":"10.1016/j.dark.2024.101640","url":null,"abstract":"<div><p>In the paper, we present an accelerating cosmological model in <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> gravity with the parameter constrained through the cosmological data sets. At the beginning, we have employed a functional form of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mi>α</mi><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>β</mi></mrow></msubsup></mrow></math></span>, where <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span> are model parameters. This model is well motivated from the Starobinsky model in <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> gravity and the power law form of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. The Hubble parameter has been derived with some algebraic manipulation and constrained by Hubble data and Pantheon<span><math><msup><mrow></mrow><mrow><mo>+</mo></mrow></msup></math></span> data. With the constraint parameters, present value of deceleration parameter has been obtained to as <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>63</mn></mrow></math></span> with the transition at <span><math><mrow><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></math></span>. It shows the early deceleration and late time acceleration behaviour. The present value of other geometric parameters such as the jerk and snap parameter are obtained to be <span><math><mrow><msub><mrow><mi>j</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>78</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≈</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span> respectively. The state finder diagnostic test gives the quintessence behaviour at present and converging to <span><math><mi>Λ</mi></math></span>CDM at late times. Moreover the <span><math><mrow><mi>O</mi><mi>m</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> diagnostics gives negative slope which shows that the model favours the state finder diagnostic result. Also the current age of Universe has been obtained as, <span><math><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>13</mn><mo>.</mo><mn>64</mn><mspace></mspace><mspace></mspace><mi>G</mi><mi>y</mi><mi>r</mi><mi>s</mi></mrow></math></span>. The equation of state parameter also shows the quintessence behaviour. Bas","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101640"},"PeriodicalIF":5.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1016/j.dark.2024.101641
Rodrigo Sandoval-Orozco , Celia Escamilla-Rivera , Rebecca Briffa , Jackson Levi Said
In this paper, we present independent determinations of cosmological parameters and new constraints on cosmologies, employing two new catalogs related to HII galaxy Hubble and CMB distance priors, along with the local standard measurements, SNIa, measurements, growth rate data (RSD), and BAO baselines. We found that the marginalized best-fit C.L. and parameters within cosmologies allow to relax the current cosmological tensions using HIIG data, which produces a larger range of admissible values for the current Hubble constant, and when all baselines are considered, the uncertainty bands for and the matter density parameter reduce significantly.
{"title":"Testing f(T) cosmologies with HII Hubble diagram and CMB distance priors","authors":"Rodrigo Sandoval-Orozco , Celia Escamilla-Rivera , Rebecca Briffa , Jackson Levi Said","doi":"10.1016/j.dark.2024.101641","DOIUrl":"10.1016/j.dark.2024.101641","url":null,"abstract":"<div><p>In this paper, we present independent determinations of cosmological parameters and new constraints on <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> cosmologies, employing two new catalogs related to HII galaxy Hubble and CMB distance priors, along with the local standard measurements, SNIa, <span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> measurements, growth rate data (RSD), and BAO baselines. We found that the marginalized best-fit C.L. <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> parameters within <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> cosmologies allow <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> to relax the current cosmological tensions using HIIG data, which produces a larger range of admissible values for the current Hubble constant, and when all baselines are considered, the uncertainty bands for <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the matter density parameter reduce significantly.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101641"},"PeriodicalIF":5.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212686424002231/pdfft?md5=526bc2ab6ba51006adaa7cd273274cd7&pid=1-s2.0-S2212686424002231-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.dark.2024.101638
Carlos Sánchez-Aguilera, Rafael Hernández-Jiménez, Claudia Moreno
<div><p>Efforts to explain the current accelerated expansion of the universe have prompted the investigation of different scenarios characterised by dark energy models. In this study, we explore an extended <span><math><mi>ω</mi></math></span>CBFP model, incorporating two commonly used parameterisations of <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in terms of the redshift <span><math><mi>z</mi></math></span>: <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>z</mi><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. In this context, the cosmological parameter <span><math><mi>Λ</mi></math></span> is directly linked to the dark matter component through a barotropic framework, where <span><math><mi>Λ</mi></math></span> acts as the source of <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi><mi>d</mi><mi>m</mi></mrow></msub></math></span>, characterised by a dimensionless constant <span><math><mi>λ</mi></math></span>, and directly dependent on <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>CDM</mi></mrow></msup></math></span>, which is fully defined by a specific <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> functional form. Through a statistical analysis, using late-time data of observational Hubble and type Ia Supernovae, we computed the joint best-fit value of the free parameters by means of the affine-invariant MCMC. On the one hand, the <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>CBFP instance shows an unexpected larger <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn><mspace></mspace><mi>c</mi><mi>d</mi><mi>m</mi></mrow></msub></math></span> contribution than the current <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn><mspace></mspace><mi>Λ</mi></mrow></msub></math></span>. Remarkably this outcome has not been previously reported (to our knowledge). On the other hand, in the <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>CBFP example the dark energy component makes up nearly 60% of the total matter-energy at <span><math><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow></math></span>, compared to just 36% for the cold dark matter contribution. This last result aligns more with the conventional <span><math><mi>Λ</mi></math></span>CDM model. In both instances there are unusual increases in <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi><mi>d</mi><mi
{"title":"ω-Cosmological Boundary Flux Parameter","authors":"Carlos Sánchez-Aguilera, Rafael Hernández-Jiménez, Claudia Moreno","doi":"10.1016/j.dark.2024.101638","DOIUrl":"10.1016/j.dark.2024.101638","url":null,"abstract":"<div><p>Efforts to explain the current accelerated expansion of the universe have prompted the investigation of different scenarios characterised by dark energy models. In this study, we explore an extended <span><math><mi>ω</mi></math></span>CBFP model, incorporating two commonly used parameterisations of <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> in terms of the redshift <span><math><mi>z</mi></math></span>: <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>z</mi><mo>/</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. In this context, the cosmological parameter <span><math><mi>Λ</mi></math></span> is directly linked to the dark matter component through a barotropic framework, where <span><math><mi>Λ</mi></math></span> acts as the source of <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi><mi>d</mi><mi>m</mi></mrow></msub></math></span>, characterised by a dimensionless constant <span><math><mi>λ</mi></math></span>, and directly dependent on <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>CDM</mi></mrow></msup></math></span>, which is fully defined by a specific <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span> functional form. Through a statistical analysis, using late-time data of observational Hubble and type Ia Supernovae, we computed the joint best-fit value of the free parameters by means of the affine-invariant MCMC. On the one hand, the <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>CBFP instance shows an unexpected larger <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn><mspace></mspace><mi>c</mi><mi>d</mi><mi>m</mi></mrow></msub></math></span> contribution than the current <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn><mspace></mspace><mi>Λ</mi></mrow></msub></math></span>. Remarkably this outcome has not been previously reported (to our knowledge). On the other hand, in the <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>CBFP example the dark energy component makes up nearly 60% of the total matter-energy at <span><math><mrow><mi>z</mi><mo>=</mo><mn>0</mn></mrow></math></span>, compared to just 36% for the cold dark matter contribution. This last result aligns more with the conventional <span><math><mi>Λ</mi></math></span>CDM model. In both instances there are unusual increases in <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>c</mi><mi>d</mi><mi","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101638"},"PeriodicalIF":5.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1016/j.dark.2024.101631
Abdul Jawad , Muhammad Usman , Mohammad Mahtab Alam
The primary goal of this article is to analyze the disproportion between matter and antimatter in the Universe using the phenomenon of gravitational baryogenesis under the framework of gravity, where , and are Ricci Scalar, Gauss–Bonnet invariant and the trace of energy momentum tensor. This phenomenon based on charge parity violation interactions and in this article we generate it through the coupling between the baryon matter current () and as well as for generalized case with () and . We evaluate the ratio (baryon to entropy) of the propose model of gravity for gravitational baryogenesis and generalized gravitational baryogenesis with power-law form consideration for the scale factor in different eras of the Universe. We notice that the results of () are compatible with its observational bound under the optimal choice of model parameters and hence we say that this gravity is good for gravitational baryogenesis under certain constraints of model parameters.
{"title":"Compatibility of Gravitational Baryogenesis with theoretical framework of f(R,G,T) Gravity","authors":"Abdul Jawad , Muhammad Usman , Mohammad Mahtab Alam","doi":"10.1016/j.dark.2024.101631","DOIUrl":"10.1016/j.dark.2024.101631","url":null,"abstract":"<div><p>The primary goal of this article is to analyze the disproportion between matter and antimatter in the Universe using the phenomenon of gravitational baryogenesis under the framework of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity, where <span><math><mi>R</mi></math></span>, <span><math><mi>G</mi></math></span> and <span><math><mi>T</mi></math></span> are Ricci Scalar, Gauss–Bonnet invariant and the trace of energy momentum tensor. This phenomenon based on charge parity violation interactions and in this article we generate it through the coupling between the baryon matter current (<span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow></msup></math></span>) and <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>ν</mi></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>+</mo><mi>G</mi><mo>+</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> as well as for generalized case with (<span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>ν</mi></mrow></msup></math></span>) and <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>ν</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>+</mo><mi>G</mi><mo>+</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>. We evaluate the ratio <span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>B</mi></mrow></msub></mrow></msub></mrow><mrow><mi>S</mi></mrow></mfrac></math></span> (baryon to entropy) of the propose model of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>G</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity for gravitational baryogenesis and generalized gravitational baryogenesis with power-law form consideration for the scale factor in different eras of the Universe. We notice that the results of (<span><math><mfrac><mrow><msub><mrow><mi>η</mi></mrow><mrow><msub><mrow></mrow><mrow><mi>B</mi></mrow></msub></mrow></msub></mrow><mrow><mi>S</mi></mrow></mfrac></math></span>) are compatible with its observational bound under the optimal choice of model parameters and hence we say that this gravity is good for gravitational baryogenesis under certain constraints of model parameters.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101631"},"PeriodicalIF":5.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142149281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}