首页 > 最新文献

Physics of the Dark Universe最新文献

英文 中文
Optical properties of Euler–Heisenberg black hole surrounded by perfect fluid dark matter 被完美流体暗物质包围的欧拉-海森堡黑洞的光学特性
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-25 DOI: 10.1016/j.dark.2024.101583
G. Dilara Açan Yildiz , Allah Ditta , Asifa Ashraf , Ertan Güdekli , Yousef Mohammed Alanazi , Anvar Reyimberganov

This work explores the phenomenon of plasma lensing in weak plasma fields around Euler–Heisenberg black holes submerged in perfect fluid dark matter. For both uniform and non-uniform plasma environments, the deflection angle is systematically determined, investigating the impact of different parameters on the deflection angle in each plasma field. We also discuss on the gravitational deflection ring using the deflection angle for uniform and non-uniform plasma. We also investigate the energy collision inside the black hole, offering a thorough investigation of the relationship between energy collision, gravitational deflection, and plasma lensing for Euler–Heisenberg black holes encircled by perfect fluid dark matter. we concluded that the deflection angle in uniform plasma is greater than in non-uniform plasma. Similarly, image magnification from the source is higher in higher plasma concentration. Image is also more magnified in the uniform plasma than in the SIS plasma field. Ring deflection angle in Uniform plasma is also more than SIS plasma field.

这项研究探索了淹没在完美流体暗物质中的欧拉-海森堡黑洞周围弱等离子体场中的等离子体透镜现象。针对均匀和非均匀等离子体环境,系统地测定了偏转角,研究了不同参数对各等离子体场中偏转角的影响。我们还利用均匀和非均匀等离子体的偏转角讨论了引力偏转环。我们还研究了黑洞内部的能量碰撞,对被完美流体暗物质包围的欧拉-海森堡黑洞的能量碰撞、引力偏转和等离子体透镜之间的关系进行了深入研究。同样,等离子体浓度越高,光源的图像放大率也越高。均匀等离子体中的图像放大率也高于 SIS 等离子体场中的图像放大率。均匀等离子体中的环形偏转角也大于 SIS 等离子体场中的环形偏转角。
{"title":"Optical properties of Euler–Heisenberg black hole surrounded by perfect fluid dark matter","authors":"G. Dilara Açan Yildiz ,&nbsp;Allah Ditta ,&nbsp;Asifa Ashraf ,&nbsp;Ertan Güdekli ,&nbsp;Yousef Mohammed Alanazi ,&nbsp;Anvar Reyimberganov","doi":"10.1016/j.dark.2024.101583","DOIUrl":"10.1016/j.dark.2024.101583","url":null,"abstract":"<div><p>This work explores the phenomenon of plasma lensing in weak plasma fields around Euler–Heisenberg black holes submerged in perfect fluid dark matter. For both uniform and non-uniform plasma environments, the deflection angle is systematically determined, investigating the impact of different parameters on the deflection angle in each plasma field. We also discuss on the gravitational deflection ring using the deflection angle for uniform and non-uniform plasma. We also investigate the energy collision inside the black hole, offering a thorough investigation of the relationship between energy collision, gravitational deflection, and plasma lensing for Euler–Heisenberg black holes encircled by perfect fluid dark matter. we concluded that the deflection angle in uniform plasma is greater than in non-uniform plasma. Similarly, image magnification from the source is higher in higher plasma concentration. Image is also more magnified in the uniform plasma than in the SIS plasma field. Ring deflection angle in Uniform plasma is also more than SIS plasma field.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101583"},"PeriodicalIF":5.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observational constraints on FLRW, Bianchi type I and V brane models 对 FLRW、比安奇 I 型和 V 型rane 模型的观测约束
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-25 DOI: 10.1016/j.dark.2024.101591
R. Jalalzadeh , S. Jalalzadeh , B. Malekolkalami , Z. Davari
<div><p>This study explores the compatibility of Covariant Extrinsic Gravity (CEG), a braneworld scenario with an arbitrary number of non-compact extra dimensions, with current cosmological observations. We employ the chi-square statistic and Markov Chain Monte Carlo (MCMC) methods to fit the Friedmann–Lemaître–Robertson–Walker (FLRW) and Bianchi type-I and V brane models to the latest datasets, including Hubble, Pantheon+ Supernova samples, Big Bang Nucleosynthesis (BBN), Baryon Acoustic Oscillations (BAO), and the structure growth rate, <span><math><mrow><mi>f</mi><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow></mrow></math></span>. Parameters for FLRW universe consist <span><math><mfenced><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(b)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(cd)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>γ</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></mfenced></math></span>, while for the Bianchi model are <span><math><mfenced><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(b)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(cd)</mtext></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>γ</mi><mo>,</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></msubsup><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>8</mn></mrow></msub></mrow></mfenced></math></span>. By comparing our models to observational data, we determine the best values for cosmological parameters. For the FLRW model, these values depend on the sign of <span><math><mi>γ</mi></math></span> (which gives the time variation of gravitational constant in Hubble time unit): <span><math><mrow><mi>γ</mi><mo>></mo><mn>0</mn></mrow></math></span> yields <span><math><mrow><mi>γ</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>0000</mn><msubsup><mrow><mn>8</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00011</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00015</mn></mrow></msubsup></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow><mrow><mtext>(k)</mtext></mrow></msubsup><mo>=</mo><mn>0</mn><mo>.</mo><mn>01</mn><msubsup><mrow><mn>4</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>022</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>024</mn></mrow></msubsup></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo><</mo><mn>0</mn></mrow></math></span> leads
本研究探讨了共变外引力(CEG)--一种具有任意数量非紧凑额外维度的支链世界情景--与当前宇宙学观测的兼容性。我们采用秩方统计和马尔可夫链蒙特卡洛(MCMC)方法,将弗里德曼-勒梅特-罗伯逊-沃克(FLRW)和比安奇 I 型和 V 型星系模型与最新数据集进行拟合,包括哈勃、潘神+超新星样本、大爆炸核合成(BBN)、重子声振荡(BAO)和结构增长率 fσ8(z)。FLRW宇宙的参数包括Ω0(b),Ω0(cd),Ω0(k),H0,γ,σ8,而Bianchi模型的参数包括Ω0(b),Ω0(cd),Ω0(β),H0,γ,Ω0(θ),σ8。通过比较我们的模型和观测数据,我们确定了宇宙学参数的最佳值。对于 FLRW 模型,这些值取决于 γ 的符号(以哈勃时间单位表示引力常数的时间变化):γ>0导致γ=0.00008-0.00011+0.00015,Ω0(k)=0.014-0.022+0.024;γ<0导致γ=-0.0226-0.0062+0.0054,Ω0(k)=0.023-0.041+0.039。需要注意的是,在这两种情况下,Ω0(k)>0 都代表一个封闭的宇宙。同样,对于 Bianchi Type-V brane 模型,参数值随 γ 的符号变化,结果是 γ=0.00084-0.00021+0.00019,Ω0(β)=0.0258-0.0063+0.0052,Ω0θ(×10-5)=4。γ>0时,γ=-0.00107-0.00020+0.00019,Ω0(β)=0.0259-0.0062+0.0050,Ω0θ(×10-5)=4.17-0.98+0.91。在这两种情况下,Ω0(β)>0 都代表了 Bianchi 类型-V,因为在 Bianchi 类型-I 中,β=0。随后,我们利用这些获得的最佳值,分析了哈勃参数、减速参数、距离模量、状态方程和密度参数等关键宇宙学参数的行为,这些参数是物质和暗能量几何分量的特征,是红移的函数。我们的研究结果表明,基于各种统计标准,γ<0 的 FLRW 模型比 Bianchi 模型更符合观测数据。
{"title":"Observational constraints on FLRW, Bianchi type I and V brane models","authors":"R. Jalalzadeh ,&nbsp;S. Jalalzadeh ,&nbsp;B. Malekolkalami ,&nbsp;Z. Davari","doi":"10.1016/j.dark.2024.101591","DOIUrl":"10.1016/j.dark.2024.101591","url":null,"abstract":"&lt;div&gt;&lt;p&gt;This study explores the compatibility of Covariant Extrinsic Gravity (CEG), a braneworld scenario with an arbitrary number of non-compact extra dimensions, with current cosmological observations. We employ the chi-square statistic and Markov Chain Monte Carlo (MCMC) methods to fit the Friedmann–Lemaître–Robertson–Walker (FLRW) and Bianchi type-I and V brane models to the latest datasets, including Hubble, Pantheon+ Supernova samples, Big Bang Nucleosynthesis (BBN), Baryon Acoustic Oscillations (BAO), and the structure growth rate, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Parameters for FLRW universe consist &lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;(b)&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;(cd)&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;(k)&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;, while for the Bianchi model are &lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;(b)&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;(cd)&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;. By comparing our models to observational data, we determine the best values for cosmological parameters. For the FLRW model, these values depend on the sign of &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (which gives the time variation of gravitational constant in Hubble time unit): &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; yields &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;0000&lt;/mn&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;00011&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;00015&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mtext&gt;(k)&lt;/mtext&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;01&lt;/mn&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;022&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;024&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; leads ","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101591"},"PeriodicalIF":5.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of torsion and electric charge parameters on the configuration of anisotropic compact stars in f(T) gravity 扭转和电荷参数对各向异性紧凑星在f(T</mml:
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-23 DOI: 10.1016/j.dark.2024.101586
S.K. Maurya , Abdelghani Errehymy , Mohammed Daoud , Kairat Myrzakulov , Zhanbala Umbetova

Under the assumption of a linear f(T) function, we present a new exact solution for an anisotropic and charged stars in the background of f(T)-gravity. By considering ansatz for the metric potential, charge function, and anisotropy function, we have arrived at an exact and nonsingular solution to the field problem. The anisotropy and charge function are discovered to be contingent upon the existence of the torsion scalar, and the evolution of the charge and anisotropy of the stellar matter is significantly influenced by variations in the torsion parameter ζ1. The features of anisotropy and charged compact star at the boundary are examined by making the interior metric solution correspond to the exterior Reissner-Nordström-de Sitter solution. The physical validity of the derived quantities is shown graphically, and the energy conditions are found to be satisfied. The causality condition, hydrostatic stable equilibrium, and adiabatic stability are also verified for the chosen values of the torsion parameter. The MR relations are analyzed for the charged and anisotropic stellar configurations in f(T)-gravity. It is found that increasing values of the torsion parameter ζ1 enhance the maximum mass of the star while increasing values of the charge parameter q0 decrease the maximum mass. The influence of anisotropy via increasing the torsion parameter could be a probable interpretation of the maximum masses exceeding 2.5 M, as observed in the case of the secondary companion of GW190814. Interestingly, our study sheds light on the characteristic of non-singular solutions to the field equations in f(T)-gravity with linear f(T).

在线性f(T)函数的假设下,我们提出了f(T)引力背景下各向异性和带电恒星的新精确解。通过对度量势、电荷函数和各向异性函数的解析,我们得到了场问题的精确非奇异解。我们发现各向异性和电荷函数取决于扭转标量的存在,而恒星物质的电荷和各向异性的演化受到扭转参数ζ1变化的显著影响。通过使内部度量解与外部赖斯纳-诺德斯特伦-德西特解相对应,研究了各向异性和边界带电紧凑星的特征。图解显示了推导量的物理有效性,并发现能量条件得到了满足。对于所选的扭转参数值,还验证了因果关系条件、流体静力学稳定平衡和绝热稳定性。分析了 f(T) 引力下带电和各向异性恒星构型的 M-R 关系。研究发现,扭转参数 ζ1 的增大会提高恒星的最大质量,而电荷参数 q0 的增大会降低恒星的最大质量。各向异性通过增加扭转参数产生的影响可能是最大质量超过 2.5 M⊙的一个解释,正如在 GW190814 的次级伴星中观测到的那样。有趣的是,我们的研究揭示了具有线性f(T)引力的f(T)引力场方程的非正弦解的特征。
{"title":"Effect of torsion and electric charge parameters on the configuration of anisotropic compact stars in f(T) gravity","authors":"S.K. Maurya ,&nbsp;Abdelghani Errehymy ,&nbsp;Mohammed Daoud ,&nbsp;Kairat Myrzakulov ,&nbsp;Zhanbala Umbetova","doi":"10.1016/j.dark.2024.101586","DOIUrl":"10.1016/j.dark.2024.101586","url":null,"abstract":"<div><p>Under the assumption of a linear <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> function, we present a new exact solution for an anisotropic and charged stars in the background of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>-gravity. By considering ansatz for the metric potential, charge function, and anisotropy function, we have arrived at an exact and nonsingular solution to the field problem. The anisotropy and charge function are discovered to be contingent upon the existence of the torsion scalar, and the evolution of the charge and anisotropy of the stellar matter is significantly influenced by variations in the torsion parameter <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. The features of anisotropy and charged compact star at the boundary are examined by making the interior metric solution correspond to the exterior Reissner-Nordström-de Sitter solution. The physical validity of the derived quantities is shown graphically, and the energy conditions are found to be satisfied. The causality condition, hydrostatic stable equilibrium, and adiabatic stability are also verified for the chosen values of the torsion parameter. The <span><math><mrow><mi>M</mi><mo>−</mo><mi>R</mi></mrow></math></span> relations are analyzed for the charged and anisotropic stellar configurations in <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>-gravity. It is found that increasing values of the torsion parameter <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> enhance the maximum mass of the star while increasing values of the charge parameter <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> decrease the maximum mass. The influence of anisotropy via increasing the torsion parameter could be a probable interpretation of the maximum masses exceeding 2.5 <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, as observed in the case of the secondary companion of GW190814. Interestingly, our study sheds light on the characteristic of non-singular solutions to the field equations in <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>-gravity with linear <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101586"},"PeriodicalIF":5.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dipole cosmology in fQ-gravity fQ引力中的偶极宇宙学
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-23 DOI: 10.1016/j.dark.2024.101585
Andronikos Paliathanasis

Symmetric teleparallel f(Q)-gravity allows for the presence of a perfect fluid with a tilted velocity in the Kantowski–Sachs geometry. In this dipole model, we consider an ideal gas and we investigate the evolution of the physical parameters. The tilt parameter is constrained by the nonlinear function f(Q) through the non-diagonal equations of the field equations. We find that the dynamics always reduce to the vacuum solutions of STEGR. This includes the Kasner universe, when no cosmological term is introduced by the f(Q) function, and the isotropic de Sitter universe, where fQ plays the role of the cosmological constant. In the extreme tilt limit, the universe is consistently anisotropic and accelerated. However, the final solution matches that of STEGR.

对称远平行 f(Q)引力允许在康托夫斯基-萨克斯几何中存在具有倾斜速度的完美流体。在这个偶极模型中,我们考虑了理想气体,并研究了物理参数的演变。通过场方程的非对角方程,倾斜参数受到非线性函数 f(Q) 的约束。我们发现,动力学总是还原为 STEGR 的真空解。这包括 f(Q) 函数没有引入宇宙学项的卡斯纳宇宙,以及 fQ 扮演宇宙学常数角色的各向同性德西特宇宙。在极端倾斜极限中,宇宙始终是各向异性和加速的。然而,最终解与 STEGR 的解相吻合。
{"title":"Dipole cosmology in fQ-gravity","authors":"Andronikos Paliathanasis","doi":"10.1016/j.dark.2024.101585","DOIUrl":"10.1016/j.dark.2024.101585","url":null,"abstract":"<div><p>Symmetric teleparallel <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span>-gravity allows for the presence of a perfect fluid with a tilted velocity in the Kantowski–Sachs geometry. In this dipole model, we consider an ideal gas and we investigate the evolution of the physical parameters. The tilt parameter is constrained by the nonlinear function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> through the non-diagonal equations of the field equations. We find that the dynamics always reduce to the vacuum solutions of STEGR. This includes the Kasner universe, when no cosmological term is introduced by the <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> function, and the isotropic de Sitter universe, where <span><math><mrow><mi>f</mi><mfenced><mrow><mi>Q</mi></mrow></mfenced></mrow></math></span> plays the role of the cosmological constant. In the extreme tilt limit, the universe is consistently anisotropic and accelerated. However, the final solution matches that of STEGR.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101585"},"PeriodicalIF":5.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addressing the Hubble tension in Yukawa cosmology? 解决汤川宇宙学中的哈勃张力?
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-20 DOI: 10.1016/j.dark.2024.101584
Kimet Jusufi , Esteban González , Genly Leon

In Yukawa cosmology, a recent discovery revealed a relationship between baryonic matter and the dark sector. The relation is described by the parameter α and the long-range interaction parameter λ - an intrinsic property of the graviton. Applying the uncertainty relation to the graviton raises a compelling question: Is there a quantum mechanical limit to the measurement precision of the Hubble constant (H0)? We argue that the uncertainty relation for the graviton wavelength λ can be used to explain a running of H0 with redshift. We show that the uncertainty in time has an inverse correlation with the value of the Hubble constant. That means that the measurement of the Hubble constant is intrinsically linked to length scales (redshift) and is connected to the uncertainty in time. On cosmological scales, we found that the uncertainty in time is related to the look-back time quantity. For measurements with a high redshift value, there is more uncertainty in time, which leads to a smaller value for the Hubble constant. Conversely, there is less uncertainty in time for local measurements with a smaller redshift value, resulting in a higher value for the Hubble constant. Therefore, due to the uncertainty relation, the Hubble tension is believed to arise from fundamental limitations inherent in cosmological measurements. Finally, our findings indicate that the mass of the graviton fluctuates with specific scales, suggesting a possible mass-varying mechanism for the graviton.

在汤川宇宙学中,最近的一项发现揭示了重子物质与暗部门之间的关系。这种关系由参数α和长程相互作用参数λ(引力子的内在属性)来描述。将不确定性关系应用于引力子会引发一个引人注目的问题:哈勃常数(H0)的测量精度是否存在量子力学限制?我们认为,引力子波长λ的不确定性关系可以用来解释哈勃常数随红移的变化。我们证明,时间的不确定性与哈勃常数的值呈反相关。这意味着哈勃常数的测量与长度尺度(红移)有内在联系,并与时间的不确定性有关。在宇宙学尺度上,我们发现时间的不确定性与回望时间量有关。对于红移值较高的测量,时间的不确定性较大,从而导致哈勃常数的值较小。相反,对于红移值较小的本地测量,时间的不确定性较小,从而导致哈勃常数的数值较大。因此,根据不确定性关系,哈勃张力被认为是宇宙学测量中固有的基本限制造成的。最后,我们的研究结果表明,引力子的质量随特定尺度波动,这表明引力子可能存在质量变化机制。
{"title":"Addressing the Hubble tension in Yukawa cosmology?","authors":"Kimet Jusufi ,&nbsp;Esteban González ,&nbsp;Genly Leon","doi":"10.1016/j.dark.2024.101584","DOIUrl":"10.1016/j.dark.2024.101584","url":null,"abstract":"<div><p>In Yukawa cosmology, a recent discovery revealed a relationship between baryonic matter and the dark sector. The relation is described by the parameter <span><math><mi>α</mi></math></span> and the long-range interaction parameter <span><math><mi>λ</mi></math></span> - an intrinsic property of the graviton. Applying the uncertainty relation to the graviton raises a compelling question: Is there a quantum mechanical limit to the measurement precision of the Hubble constant (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>)? We argue that the uncertainty relation for the graviton wavelength <span><math><mi>λ</mi></math></span> can be used to explain a running of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with redshift. We show that the uncertainty in time has an inverse correlation with the value of the Hubble constant. That means that the measurement of the Hubble constant is intrinsically linked to length scales (redshift) and is connected to the uncertainty in time. On cosmological scales, we found that the uncertainty in time is related to the look-back time quantity. For measurements with a high redshift value, there is more uncertainty in time, which leads to a smaller value for the Hubble constant. Conversely, there is less uncertainty in time for local measurements with a smaller redshift value, resulting in a higher value for the Hubble constant. Therefore, due to the uncertainty relation, the Hubble tension is believed to arise from fundamental limitations inherent in cosmological measurements. Finally, our findings indicate that the mass of the graviton fluctuates with specific scales, suggesting a possible mass-varying mechanism for the graviton.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101584"},"PeriodicalIF":5.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141960635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warm inflation in a Universe with a Weylian boundary 具有韦氏边界的宇宙中的暖膨胀
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-20 DOI: 10.1016/j.dark.2024.101578
Teodora M. Matei , Tiberiu Harko

We investigate the influence of boundary terms in the warm inflationary scenario, by considering that in the Einstein–Hilbert action the boundary can be described in terms of a Weyl-type geometry. The gravitational action, as well as the field equations, are thus extended to include new geometrical terms, coming from the non-metric nature of the boundary, and depending on the Weyl vector, and its covariant derivatives. We investigate the effects of these new boundary terms by considering the warm inflationary scenario of the early evolution of the Universe, in the presence of a scalar field. We obtain the generalized Friedmann equations in the Universe with a Weylian boundary by considering the Friedmann–Lemaitre–Robertson–Walker metric. We consider the simultaneous decay of the scalar field, and of the creation of radiation, by appropriately splitting the general conservation equation through the introduction of the dissipation coefficient, which can depend on both the scalar field, and the Weyl vector. We consider three distinct warm inflationary models, in which the dissipation coefficients are chosen as different functions of the scalar field and of the Weyl vector. The numerical solutions of the cosmological evolution equations show that the radiation is created during the very early phases of expansion, and, after the radiation reaches its maximum value, the transition from an accelerating inflationary phase to a decelerating one takes place. Moreover, it turns out that the Weyl vector, describing the boundary effects on the cosmological evolution, plays a significant role during the process of radiation creation.

通过考虑在爱因斯坦-希尔伯特作用中,边界可以用韦尔型几何来描述,我们研究了边界项在暖膨胀情景中的影响。因此,引力作用和场方程被扩展到包括新的几何项,这些新的几何项来自边界的非度量性质,并取决于韦尔向量及其协变导数。我们通过考虑宇宙早期演化的暖膨胀情景,在存在标量场的情况下研究这些新边界项的影响。通过考虑弗里德曼-勒梅特尔-罗伯逊-沃克公设,我们得到了具有韦氏边界的宇宙中的广义弗里德曼方程。我们通过引入耗散系数,对一般守恒方程进行适当拆分,从而考虑了标量场的同时衰减和辐射的产生。我们考虑了三种不同的暖膨胀模型,其中耗散系数被选择为标量场和韦尔向量的不同函数。宇宙学演化方程的数值解表明,辐射是在膨胀的早期阶段产生的,而在辐射达到最大值之后,就会从加速膨胀阶段过渡到减速阶段。此外,描述宇宙演化边界效应的韦尔向量在辐射产生过程中也发挥了重要作用。
{"title":"Warm inflation in a Universe with a Weylian boundary","authors":"Teodora M. Matei ,&nbsp;Tiberiu Harko","doi":"10.1016/j.dark.2024.101578","DOIUrl":"10.1016/j.dark.2024.101578","url":null,"abstract":"<div><p>We investigate the influence of boundary terms in the warm inflationary scenario, by considering that in the Einstein–Hilbert action the boundary can be described in terms of a Weyl-type geometry. The gravitational action, as well as the field equations, are thus extended to include new geometrical terms, coming from the non-metric nature of the boundary, and depending on the Weyl vector, and its covariant derivatives. We investigate the effects of these new boundary terms by considering the warm inflationary scenario of the early evolution of the Universe, in the presence of a scalar field. We obtain the generalized Friedmann equations in the Universe with a Weylian boundary by considering the Friedmann–Lemaitre–Robertson–Walker metric. We consider the simultaneous decay of the scalar field, and of the creation of radiation, by appropriately splitting the general conservation equation through the introduction of the dissipation coefficient, which can depend on both the scalar field, and the Weyl vector. We consider three distinct warm inflationary models, in which the dissipation coefficients are chosen as different functions of the scalar field and of the Weyl vector. The numerical solutions of the cosmological evolution equations show that the radiation is created during the very early phases of expansion, and, after the radiation reaches its maximum value, the transition from an accelerating inflationary phase to a decelerating one takes place. Moreover, it turns out that the Weyl vector, describing the boundary effects on the cosmological evolution, plays a significant role during the process of radiation creation.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101578"},"PeriodicalIF":5.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the subsolar-mass black hole candidate SSM200308 from the second part of the third observing run of Advanced LIGO-Virgo 高级 LIGO-Virgo 第三次观测运行第二部分对太阳系下质量候选黑洞 SSM200308 的分析
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-19 DOI: 10.1016/j.dark.2024.101582
Marine Prunier , Gonzalo Morrás , José Francisco Nuño Siles , Sebastien Clesse , Juan García-Bellido , Ester Ruiz Morales

We present a follow-up study of a subsolar black hole candidate identified in the second part of the third observing run of the LIGO-Virgo-KAGRA collaboration. The candidate was identified by the GstLAL search pipeline in the Hanford and Livingston LIGO detectors with a network signal-to-noise ratio of 8.90 and a false-alarm-rate of 1 per 5 years. It is the most significant of the three candidates found below the O3b subsolar mass false-alarm rate threshold of 2 per year, but still not significant enough above the background to claim a clear gravitational wave origin. A Bayesian parameter estimation of this candidate, denoted SSM200308, reveals that if the signal originates from a compact binary coalescence, the component masses are m1=0.620.20+0.46M and m2=0.270.10+0.12M (90% credible intervals) with at least one component being firmly subsolar, below the minimum mass of a neutron star. This discards the hypothesis that the signal comes from a standard binary neutron star. The signal coherence test between the two LIGO detectors is consistent with, but does not necessarily imply, a compact object coalescence origin.

我们介绍了对在 LIGO-Virgo-KAGRA 协作第三次观测运行第二部分中发现的一个太阳系下黑洞候选者的跟踪研究。汉福德和利文斯顿 LIGO 探测器中的 GstLAL 搜索管道发现了这个候选天体,网络信噪比为 8.90,误报率为每 5 年 1 次。它是在 O3b 亚太阳质量误报率阈值(每年 2 次)以下发现的三个候选天体中最重要的一个,但其重要性仍不足以超越背景,从而声称其具有明确的引力波起源。对这个被称为 SSM200308 的候选天体进行贝叶斯参数估计后发现,如果信号来源于一个紧凑的双星凝聚,那么其成分质量为 和 (90% 可信区间),其中至少有一个成分是稳固的亚太阳质量,低于中子星的最小质量。这就否定了信号来自标准双中子星的假设。两个 LIGO 探测器之间的信号一致性测试与紧凑天体凝聚起源一致,但并不一定意味着紧凑天体凝聚起源。
{"title":"Analysis of the subsolar-mass black hole candidate SSM200308 from the second part of the third observing run of Advanced LIGO-Virgo","authors":"Marine Prunier ,&nbsp;Gonzalo Morrás ,&nbsp;José Francisco Nuño Siles ,&nbsp;Sebastien Clesse ,&nbsp;Juan García-Bellido ,&nbsp;Ester Ruiz Morales","doi":"10.1016/j.dark.2024.101582","DOIUrl":"10.1016/j.dark.2024.101582","url":null,"abstract":"<div><p>We present a follow-up study of a subsolar black hole candidate identified in the second part of the third observing run of the LIGO-Virgo-KAGRA collaboration. The candidate was identified by the GstLAL search pipeline in the Hanford and Livingston LIGO detectors with a network signal-to-noise ratio of 8.90 and a false-alarm-rate of 1 per 5 years. It is the most significant of the three candidates found below the O3b subsolar mass false-alarm rate threshold of 2 per year, but still not significant enough above the background to claim a clear gravitational wave origin. A Bayesian parameter estimation of this candidate, denoted SSM200308, reveals that if the signal originates from a compact binary coalescence, the component masses are <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn><msubsup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>20</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>46</mn></mrow></msubsup><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn><msubsup><mrow><mn>7</mn></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>10</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>12</mn></mrow></msubsup><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> (90% credible intervals) with at least one component being firmly subsolar, below the minimum mass of a neutron star. This discards the hypothesis that the signal comes from a standard binary neutron star. The signal coherence test between the two LIGO detectors is consistent with, but does not necessarily imply, a compact object coalescence origin.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101582"},"PeriodicalIF":5.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charged compact star with Gaussian density profile showing spin retardation 带电紧凑恒星的高斯密度曲线显示自旋迟滞
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-19 DOI: 10.1016/j.dark.2024.101581
Kumar Gaurav Sagar , Neeraj Pant , Brajesh Pandey

A charged compact star is modelled within the framework of general relativity and electromagnetism to investigate the intricate complexities arising from charge accumulation through the accretion of surrounding charged baryonic matter, charged dark matter, or both. The Einstein–Maxwell field equations are solved for the compact star PSRJ0740+6620 in anisotropic regime by employing a Gaussian type density profile over a coherent background. A radially modulated exponential function is used as a seed ansatz for coherently connecting the class-one type metric. The structural stability and feasibility are then probed through physical bounds on stellar parameters at equilibrium. The key findings associated with charge accretion emphasised: (i). the existence of a transition zone close to mass M[1.262,1.271]M and radius R[12.497,12.505]  km, indicating the formation of a core–shell type stellar structure (ii). the plane shifting of intrinsic force fields and (iii) the spin retardation, both suggest a non-vanishing spin–charge coupling between the stellar spin and the accreted charge, whether it be from baryonic matter, dark matter, or both.

在广义相对论和电磁学的框架内对一颗带电紧凑星进行建模,以研究通过周围带电重子物质、带电暗物质或两者的吸积而产生的电荷积累所带来的错综复杂的问题。通过采用相干背景上的高斯型密度曲线,求解了各向异性机制下紧凑恒星 PSRJ0740+6620 的爱因斯坦-麦克斯韦场方程。一个径向调制的指数函数被用作相干连接一类度量的种子参数。然后通过对平衡状态下恒星参数的物理约束来探测结构的稳定性和可行性。与电荷吸积相关的主要发现强调:(i).在质量 M∈[1.262,1.271]M⊙和半径 R∈[12.497,12.505] km 附近存在过渡区,表明形成了核壳型恒星结构(ii).本征力场的平面移动和(iii) 自旋迟滞都表明恒星自旋与吸积电荷之间存在着不等的自旋-电荷耦合,无论是来自重子物质、暗物质还是两者。
{"title":"Charged compact star with Gaussian density profile showing spin retardation","authors":"Kumar Gaurav Sagar ,&nbsp;Neeraj Pant ,&nbsp;Brajesh Pandey","doi":"10.1016/j.dark.2024.101581","DOIUrl":"10.1016/j.dark.2024.101581","url":null,"abstract":"<div><p>A charged compact star is modelled within the framework of general relativity and electromagnetism to investigate the intricate complexities arising from charge accumulation through the accretion of surrounding charged baryonic matter, charged dark matter, or both. The Einstein–Maxwell field equations are solved for the compact star PSRJ0740+6620 in anisotropic regime by employing a Gaussian type density profile over a coherent background. A radially modulated exponential function is used as a seed ansatz for coherently connecting the class-one type metric. The structural stability and feasibility are then probed through physical bounds on stellar parameters at equilibrium. The key findings associated with charge accretion emphasised: (i). the existence of a transition zone close to mass <span><math><mrow><mi>M</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>.</mo><mn>262</mn><mo>,</mo><mn>1</mn><mo>.</mo><mn>271</mn><mo>]</mo></mrow><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span> and radius <span><math><mrow><mi>R</mi><mo>∈</mo><mrow><mo>[</mo><mn>12</mn><mo>.</mo><mn>497</mn><mo>,</mo><mn>12</mn><mo>.</mo><mn>505</mn><mo>]</mo></mrow></mrow></math></span> <!--> <!-->km, indicating the formation of a core–shell type stellar structure (ii). the plane shifting of intrinsic force fields and (iii) the spin retardation, both suggest a non-vanishing spin–charge coupling between the stellar spin and the accreted charge, whether it be from baryonic matter, dark matter, or both.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101581"},"PeriodicalIF":5.0,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new approach to P−V phase transitions: Einstein gravity and holographic type dark energy P-V 相变的新方法:爱因斯坦引力和全息型暗能量
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-18 DOI: 10.1016/j.dark.2024.101580
Miguel Cruz , Samuel Lepe , Joel Saavedra

In the framework of Einstein’s gravity, we study the thermodynamic equation state, P=P(V,T), associated with a flat Friedmann–Lemaitre–Robertson–Walker (FLRW) universe. In this scenario, we consider the components of the dark sector as non-interacting fluids that dominate the universe’s energy content at late times. Under these circumstances, the functional structure of the cosmological coincidence parameter plays a relevant role in admitting first-order PV phase transitions; specifically, the dark energy density and the coincidence parameter must be given in terms of the radius of the apparent horizon.

在爱因斯坦引力框架内,我们研究了与平坦的弗里德曼-勒梅特-罗伯逊-沃克(FLRW)宇宙相关的热力学方程状态 P=P(V,T)。在这种情况下,我们认为暗部门的各组成部分是非相互作用的流体,在晚期主导着宇宙的能量含量。在这种情况下,宇宙学巧合参数的函数结构在允许一阶 P-V 相变方面起着重要作用;具体地说,暗能量密度和巧合参数必须以视界半径的形式给出。
{"title":"A new approach to P−V phase transitions: Einstein gravity and holographic type dark energy","authors":"Miguel Cruz ,&nbsp;Samuel Lepe ,&nbsp;Joel Saavedra","doi":"10.1016/j.dark.2024.101580","DOIUrl":"10.1016/j.dark.2024.101580","url":null,"abstract":"<div><p>In the framework of Einstein’s gravity, we study the thermodynamic equation state, <span><math><mrow><mi>P</mi><mo>=</mo><mi>P</mi><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, associated with a flat Friedmann–Lemaitre–Robertson–Walker (FLRW) universe. In this scenario, we consider the components of the dark sector as non-interacting fluids that dominate the universe’s energy content at late times. Under these circumstances, the functional structure of the cosmological coincidence parameter plays a relevant role in admitting first-order <span><math><mrow><mi>P</mi><mo>−</mo><mi>V</mi></mrow></math></span> phase transitions; specifically, the dark energy density and the coincidence parameter must be given in terms of the radius of the apparent horizon.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101580"},"PeriodicalIF":5.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing non-local gravity through Ultra-Diffuse Galaxies kinematics 通过超漫反射星系运动学测试非局域引力
IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-18 DOI: 10.1016/j.dark.2024.101579
Filippo Bouchè , Salvatore Capozziello , Ciro De Simone , Vincenzo Salzano

The emergence of the Ultra-Diffuse Galaxies in recent years has posed a severe challenge to the galaxy formation models as well as the Extended Theories of Gravity. The existence of both dark matter lacking and dark matter dominated systems within the same family of astrophysical objects indeed requires the gravity models to be versatile enough to describe very different gravitational regimes. In this work, we study a non-local extension of the theory of General Relativity that has drawn increasing attention in recent years due to its capability to account for the late time cosmic acceleration without introducing any dark energy fluid. We leverage the kinematic data of three Ultra-Diffuse Galaxies: NGC 1052-DF2 and NGC 1052-DF4, which are dark matter lacking, and Dragonfly 44, which exhibits a highly dominant dark matter component. Our analysis shows that the non-local corrections to the Newtonian potential do not affect the kinematic predictions, hence no spoiling effects emerge when the Non-local Gravity model serves as a dark energy model. We additionally provide the minimum value that the characteristic non-local radii can reach at these mass scales.

近年来出现的超弥漫星系对星系形成模型和引力扩展理论提出了严峻的挑战。在同一天体物理天体家族中,既存在暗物质缺乏的系统,也存在暗物质占主导地位的系统,这确实要求引力模型具有足够的通用性,以描述截然不同的引力状态。在这项工作中,我们研究了广义相对论的非局域扩展,由于它能够在不引入任何暗能量流体的情况下解释晚期宇宙加速度,近年来引起了越来越多的关注。我们利用了三个超漫反射星系的运动学数据:NGC 1052-DF2和NGC 1052-DF4(这两个星系缺乏暗物质),以及蜻蜓44(蜻蜓44表现出高度主导的暗物质成分)。我们的分析表明,牛顿势的非局部修正不会影响运动学预测,因此当非局部引力模型作为暗能量模型时,不会出现破坏效应。我们还提供了在这些质量尺度下特征非局部半径所能达到的最小值。
{"title":"Testing non-local gravity through Ultra-Diffuse Galaxies kinematics","authors":"Filippo Bouchè ,&nbsp;Salvatore Capozziello ,&nbsp;Ciro De Simone ,&nbsp;Vincenzo Salzano","doi":"10.1016/j.dark.2024.101579","DOIUrl":"10.1016/j.dark.2024.101579","url":null,"abstract":"<div><p>The emergence of the Ultra-Diffuse Galaxies in recent years has posed a severe challenge to the galaxy formation models as well as the Extended Theories of Gravity. The existence of both dark matter lacking and dark matter dominated systems within the same family of astrophysical objects indeed requires the gravity models to be versatile enough to describe very different gravitational regimes. In this work, we study a non-local extension of the theory of General Relativity that has drawn increasing attention in recent years due to its capability to account for the late time cosmic acceleration without introducing any dark energy fluid. We leverage the kinematic data of three Ultra-Diffuse Galaxies: NGC 1052-DF2 and NGC 1052-DF4, which are dark matter lacking, and Dragonfly 44, which exhibits a highly dominant dark matter component. Our analysis shows that the non-local corrections to the Newtonian potential do not affect the kinematic predictions, hence no spoiling effects emerge when the Non-local Gravity model serves as a dark energy model. We additionally provide the minimum value that the characteristic non-local radii can reach at these mass scales.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101579"},"PeriodicalIF":5.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics of the Dark Universe
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1