首页 > 最新文献

Memetic Computing最新文献

英文 中文
Multi-objective LSTM ensemble model for household short-term load forecasting 家庭短期负荷预测的多目标LSTM集成模型
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-25 DOI: 10.1007/s12293-022-00355-y
Fan, Chaodong, Li, Yunfan, Yi, Lingzhi, Xiao, Leyi, Qu, Xilong, Ai, Zhaoyang

With the development of smart grid, household load forecasting played an important role in power system operations. However, the household load forecasting is often inefficient due to its high volatility and uncertainty. Consequently, a multi-objective LSTM ensemble model based on the DBN combination strategy, is proposed in this paper. This method first builds a deep learning framework based on the LSTM network in order to generate several sub-models. With the diversity and accuracy of the sub-models as the objective functions, the improved MOEA/D algorithm is then used to optimize the parameters, in order to enhance the overall performance of the sub-models and ensure their differences. Finally, a DBN-based combination strategy is used to combine the single forecasts in order to form the ensemble forecast, and reduce the adverse effects of model uncertainty and data noise on the prediction accuracy. The experimental results show that the proposed method has several advantages in prediction accuracy and generalization capacity, compared with several current intelligent prediction methods.

随着智能电网的发展,家庭负荷预测在电力系统运行中发挥着重要作用。然而,由于家庭负荷预测具有较高的波动性和不确定性,因此往往效率低下。为此,本文提出了一种基于DBN组合策略的多目标LSTM集成模型。该方法首先构建基于LSTM网络的深度学习框架,生成多个子模型。以子模型的多样性和准确性为目标函数,采用改进的MOEA/D算法对参数进行优化,以提高子模型的整体性能,保证子模型的差异性。最后,采用基于dbn的组合策略,将单个预测组合起来形成集合预测,降低模型不确定性和数据噪声对预测精度的不利影响。实验结果表明,与现有的几种智能预测方法相比,该方法在预测精度和泛化能力方面具有一定的优势。
{"title":"Multi-objective LSTM ensemble model for household short-term load forecasting","authors":"Fan, Chaodong, Li, Yunfan, Yi, Lingzhi, Xiao, Leyi, Qu, Xilong, Ai, Zhaoyang","doi":"10.1007/s12293-022-00355-y","DOIUrl":"https://doi.org/10.1007/s12293-022-00355-y","url":null,"abstract":"<p>With the development of smart grid, household load forecasting played an important role in power system operations. However, the household load forecasting is often inefficient due to its high volatility and uncertainty. Consequently, a multi-objective LSTM ensemble model based on the DBN combination strategy, is proposed in this paper. This method first builds a deep learning framework based on the LSTM network in order to generate several sub-models. With the diversity and accuracy of the sub-models as the objective functions, the improved MOEA/D algorithm is then used to optimize the parameters, in order to enhance the overall performance of the sub-models and ensure their differences. Finally, a DBN-based combination strategy is used to combine the single forecasts in order to form the ensemble forecast, and reduce the adverse effects of model uncertainty and data noise on the prediction accuracy. The experimental results show that the proposed method has several advantages in prediction accuracy and generalization capacity, compared with several current intelligent prediction methods.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"13 10","pages":""},"PeriodicalIF":4.7,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138524893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A novel multimodal multiobjective memetic algorithm with a local detection mechanism and a clustering-based selection strategy 一种基于局部检测机制和聚类选择策略的多模态多目标模因算法
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-21 DOI: 10.1007/s12293-022-00353-0
Naili Luo, Yulong Ye, Wu Lin, Qiuzhen Lin, Victor C. M. Leung
{"title":"A novel multimodal multiobjective memetic algorithm with a local detection mechanism and a clustering-based selection strategy","authors":"Naili Luo, Yulong Ye, Wu Lin, Qiuzhen Lin, Victor C. M. Leung","doi":"10.1007/s12293-022-00353-0","DOIUrl":"https://doi.org/10.1007/s12293-022-00353-0","url":null,"abstract":"","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"15 1","pages":"31-43"},"PeriodicalIF":4.7,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42733928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Solving vehicle routing problem by memetic search with evolutionary multitasking 基于进化多任务的模因搜索求解车辆路径问题
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-18 DOI: 10.1007/s12293-021-00352-7
Qingxia Shang, Yuxiao Huang, Yu Wang, Min Li, Liang Feng
{"title":"Solving vehicle routing problem by memetic search with evolutionary multitasking","authors":"Qingxia Shang, Yuxiao Huang, Yu Wang, Min Li, Liang Feng","doi":"10.1007/s12293-021-00352-7","DOIUrl":"https://doi.org/10.1007/s12293-021-00352-7","url":null,"abstract":"","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"14 1","pages":"31 - 44"},"PeriodicalIF":4.7,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52806681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
A framework for expensive many-objective optimization with Pareto-based bi-indicator infill sampling criterion 基于Pareto的双指标填充采样准则的代价高昂的多目标优化框架
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-11-27 DOI: 10.1007/s12293-021-00351-8
Zhenshou Song, Handing Wang, Hongbin Xu
{"title":"A framework for expensive many-objective optimization with Pareto-based bi-indicator infill sampling criterion","authors":"Zhenshou Song, Handing Wang, Hongbin Xu","doi":"10.1007/s12293-021-00351-8","DOIUrl":"https://doi.org/10.1007/s12293-021-00351-8","url":null,"abstract":"","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"14 1","pages":"179 - 191"},"PeriodicalIF":4.7,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46468890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Dynamic grid-based uniform search for solving constrained multiobjective optimization problems 基于动态网格的均匀搜索求解约束多目标优化问题
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-11-13 DOI: 10.1007/s12293-021-00349-2
Jiawei Yuan
{"title":"Dynamic grid-based uniform search for solving constrained multiobjective optimization problems","authors":"Jiawei Yuan","doi":"10.1007/s12293-021-00349-2","DOIUrl":"https://doi.org/10.1007/s12293-021-00349-2","url":null,"abstract":"","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"13 1","pages":"497 - 508"},"PeriodicalIF":4.7,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48812672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A multipopulation evolutionary framework with Steffensen’s method for dynamic multiobjective optimization problems 动态多目标优化问题的多种群进化框架与Steffensen方法
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-11-13 DOI: 10.1007/s12293-021-00348-3
Tianyu Liu, Lei Cao, Zhuo Wang
{"title":"A multipopulation evolutionary framework with Steffensen’s method for dynamic multiobjective optimization problems","authors":"Tianyu Liu, Lei Cao, Zhuo Wang","doi":"10.1007/s12293-021-00348-3","DOIUrl":"https://doi.org/10.1007/s12293-021-00348-3","url":null,"abstract":"","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"13 1","pages":"477 - 495"},"PeriodicalIF":4.7,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43226447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Parameter adaptation in multifactorial evolutionary algorithm for many-task optimization 多任务优化多因子进化算法中的参数自适应
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-10-05 DOI: 10.1007/s12293-021-00347-4
T. Thang, Tran Cong Dao, Nguyen Hoang Long, Huynh Thi Thanh Binh
{"title":"Parameter adaptation in multifactorial evolutionary algorithm for many-task optimization","authors":"T. Thang, Tran Cong Dao, Nguyen Hoang Long, Huynh Thi Thanh Binh","doi":"10.1007/s12293-021-00347-4","DOIUrl":"https://doi.org/10.1007/s12293-021-00347-4","url":null,"abstract":"","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"13 1","pages":"433 - 446"},"PeriodicalIF":4.7,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46377361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
System-in-package design using multi-task memetic learning and optimization 使用多任务模因学习和优化的系统包内设计
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-09-23 DOI: 10.1007/s12293-021-00346-5
Weijing Dai, Zhenkun Wang, Ke Xue
{"title":"System-in-package design using multi-task memetic learning and optimization","authors":"Weijing Dai, Zhenkun Wang, Ke Xue","doi":"10.1007/s12293-021-00346-5","DOIUrl":"https://doi.org/10.1007/s12293-021-00346-5","url":null,"abstract":"","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"14 1","pages":"45 - 59"},"PeriodicalIF":4.7,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42086150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Multi-lingual character handwriting framework based on an integrated deep learning based sequence-to-sequence attention model 基于集成深度学习的序列到序列注意力模型的多语言字符手写框架
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-09-18 DOI: 10.1007/s12293-021-00345-6
Besma Rabhi, A. Elbaati, H. Boubaker, Y. Hamdi, Amir Hussain, A. Alimi
{"title":"Multi-lingual character handwriting framework based on an integrated deep learning based sequence-to-sequence attention model","authors":"Besma Rabhi, A. Elbaati, H. Boubaker, Y. Hamdi, Amir Hussain, A. Alimi","doi":"10.1007/s12293-021-00345-6","DOIUrl":"https://doi.org/10.1007/s12293-021-00345-6","url":null,"abstract":"","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"13 1","pages":"459 - 475"},"PeriodicalIF":4.7,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49488241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Solving binary multi-objective knapsack problems with novel greedy strategy 用新型贪心策略求解二元多目标背包问题
IF 4.7 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-08-21 DOI: 10.1007/s12293-021-00344-7
Jiawei Yuan, Yifan Li
{"title":"Solving binary multi-objective knapsack problems with novel greedy strategy","authors":"Jiawei Yuan, Yifan Li","doi":"10.1007/s12293-021-00344-7","DOIUrl":"https://doi.org/10.1007/s12293-021-00344-7","url":null,"abstract":"","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"13 1","pages":"447 - 458"},"PeriodicalIF":4.7,"publicationDate":"2021-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12293-021-00344-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49071289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Memetic Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1