首页 > 最新文献

IEICE Transactions on Information and Systems最新文献

英文 中文
Hierarchical Detailed Intermediate Supervision for Image-to-Image Translation 图像到图像翻译的分层详细中间监督
IF 0.7 4区 计算机科学 Pub Date : 2023-12-01 DOI: 10.1587/transinf.2023edp7025
Jianbo Wang, Haozhi Huang, Li Shen, Xuan Wang, Toshihiko Yamasaki
{"title":"Hierarchical Detailed Intermediate Supervision for Image-to-Image Translation","authors":"Jianbo Wang, Haozhi Huang, Li Shen, Xuan Wang, Toshihiko Yamasaki","doi":"10.1587/transinf.2023edp7025","DOIUrl":"https://doi.org/10.1587/transinf.2023edp7025","url":null,"abstract":"","PeriodicalId":48824,"journal":{"name":"IEICE Transactions on Information and Systems","volume":"15 10","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138625059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy-Efficient One-to-One and Many-to-One Concurrent Transmission for Wireless Sensor Networks 无线传感器网络的高能效一对一和多对一并发传输
IF 0.7 4区 计算机科学 Pub Date : 2023-12-01 DOI: 10.1587/transinf.2023edl8034
SenSong He, Ying Qiu
{"title":"Energy-Efficient One-to-One and Many-to-One Concurrent Transmission for Wireless Sensor Networks","authors":"SenSong He, Ying Qiu","doi":"10.1587/transinf.2023edl8034","DOIUrl":"https://doi.org/10.1587/transinf.2023edl8034","url":null,"abstract":"","PeriodicalId":48824,"journal":{"name":"IEICE Transactions on Information and Systems","volume":" 4","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138612093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transactional TF: Transform Library with Concurrency and Correctness 事务性 TF:具有并发性和正确性的转换库
IF 0.7 4区 计算机科学 Pub Date : 2023-12-01 DOI: 10.1587/transinf.2023pap0006
Yushi Ogiwara, Ayanori Yorozu, Akihisa Ohya, Hideyuki Kawashima
{"title":"Transactional TF: Transform Library with Concurrency and Correctness","authors":"Yushi Ogiwara, Ayanori Yorozu, Akihisa Ohya, Hideyuki Kawashima","doi":"10.1587/transinf.2023pap0006","DOIUrl":"https://doi.org/10.1587/transinf.2023pap0006","url":null,"abstract":"","PeriodicalId":48824,"journal":{"name":"IEICE Transactions on Information and Systems","volume":" 21","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138614757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power Analysis and Power Modeling of Directly-Connected FPGA Clusters 直接连接的 FPGA 集群的功率分析和功率建模
IF 0.7 4区 计算机科学 Pub Date : 2023-12-01 DOI: 10.1587/transinf.2023pap0009
Kensuke Iizuka, Haruna Takagi, Aika Kamei, Kazuei Hironaka, Hideharu Amano
{"title":"Power Analysis and Power Modeling of Directly-Connected FPGA Clusters","authors":"Kensuke Iizuka, Haruna Takagi, Aika Kamei, Kazuei Hironaka, Hideharu Amano","doi":"10.1587/transinf.2023pap0009","DOIUrl":"https://doi.org/10.1587/transinf.2023pap0009","url":null,"abstract":"","PeriodicalId":48824,"journal":{"name":"IEICE Transactions on Information and Systems","volume":"82 s361","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138622583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Principal Factor of Performance in Decoupled Front-End 解耦前端性能的主要因素
IF 0.7 4区 计算机科学 Pub Date : 2023-12-01 DOI: 10.1587/transinf.2023pap0011
Yuya Degawa, Toru Koizumi, Tomoki Nakamura, Ryota Shioya, J. Kadomoto, H. Irie, Shuichi Sakai
{"title":"A Principal Factor of Performance in Decoupled Front-End","authors":"Yuya Degawa, Toru Koizumi, Tomoki Nakamura, Ryota Shioya, J. Kadomoto, H. Irie, Shuichi Sakai","doi":"10.1587/transinf.2023pap0011","DOIUrl":"https://doi.org/10.1587/transinf.2023pap0011","url":null,"abstract":"","PeriodicalId":48824,"journal":{"name":"IEICE Transactions on Information and Systems","volume":"109 33","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138608499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous Similarity Search for Dynamic Text Streams 动态文本流的连续相似性搜索
IF 0.7 4区 计算机科学 Pub Date : 2023-12-01 DOI: 10.1587/transinf.2022edp7229
Yuma Tsuchida, Kohei Kubo, Hisashi Koga
{"title":"Continuous Similarity Search for Dynamic Text Streams","authors":"Yuma Tsuchida, Kohei Kubo, Hisashi Koga","doi":"10.1587/transinf.2022edp7229","DOIUrl":"https://doi.org/10.1587/transinf.2022edp7229","url":null,"abstract":"","PeriodicalId":48824,"journal":{"name":"IEICE Transactions on Information and Systems","volume":" 8","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138615281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning in Computer-aided Diagnosis of the Thorax and Colon in CT: A Survey. 机器学习在胸结肠CT计算机辅助诊断中的应用综述。
IF 0.7 4区 计算机科学 Pub Date : 2013-04-01 DOI: 10.1587/transinf.e96.d.772
Kenji Suzuki

Computer-aided detection (CADe) and diagnosis (CAD) has been a rapidly growing, active area of research in medical imaging. Machine leaning (ML) plays an essential role in CAD, because objects such as lesions and organs may not be represented accurately by a simple equation; thus, medical pattern recognition essentially require "learning from examples." One of the most popular uses of ML is the classification of objects such as lesion candidates into certain classes (e.g., abnormal or normal, and lesions or non-lesions) based on input features (e.g., contrast and area) obtained from segmented lesion candidates. The task of ML is to determine "optimal" boundaries for separating classes in the multidimensional feature space which is formed by the input features. ML algorithms for classification include linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), multilayer perceptrons, and support vector machines (SVM). Recently, pixel/voxel-based ML (PML) emerged in medical image processing/analysis, which uses pixel/voxel values in images directly, instead of features calculated from segmented lesions, as input information; thus, feature calculation or segmentation is not required. In this paper, ML techniques used in CAD schemes for detection and diagnosis of lung nodules in thoracic CT and for detection of polyps in CT colonography (CTC) are surveyed and reviewed.

计算机辅助检测(CADe)和诊断(CAD)已成为医学影像学中一个快速发展的活跃研究领域。机器学习(ML)在CAD中起着至关重要的作用,因为病变和器官等对象可能无法通过简单的方程准确地表示;因此,医学模式识别本质上需要“从实例中学习”。ML最流行的用途之一是根据从分割的病变候选者中获得的输入特征(例如,对比度和面积)将病变候选者等对象分类为某些类别(例如,异常或正常,病变或非病变)。机器学习的任务是确定“最佳”边界,用于在由输入特征组成的多维特征空间中分离类。用于分类的机器学习算法包括线性判别分析(LDA)、二次判别分析(QDA)、多层感知机和支持向量机(SVM)。近年来,医学图像处理/分析中出现了基于像素/体素的机器学习(PML),它直接使用图像中的像素/体素值作为输入信息,而不是从分割的病变中计算特征;因此,不需要进行特征计算或分割。本文综述了ML技术在CAD方案中用于胸部CT肺结节的检测和诊断以及CT结肠镜(CTC)中息肉的检测。
{"title":"Machine Learning in Computer-aided Diagnosis of the Thorax and Colon in CT: A Survey.","authors":"Kenji Suzuki","doi":"10.1587/transinf.e96.d.772","DOIUrl":"https://doi.org/10.1587/transinf.e96.d.772","url":null,"abstract":"<p><p>Computer-aided detection (CADe) and diagnosis (CAD) has been a rapidly growing, active area of research in medical imaging. Machine leaning (ML) plays an essential role in CAD, because objects such as lesions and organs may not be represented accurately by a simple equation; thus, medical pattern recognition essentially require \"learning from examples.\" One of the most popular uses of ML is the classification of objects such as lesion candidates into certain classes (e.g., abnormal or normal, and lesions or non-lesions) based on input features (e.g., contrast and area) obtained from segmented lesion candidates. The task of ML is to determine \"optimal\" boundaries for separating classes in the multidimensional feature space which is formed by the input features. ML algorithms for classification include linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), multilayer perceptrons, and support vector machines (SVM). Recently, pixel/voxel-based ML (PML) emerged in medical image processing/analysis, which uses pixel/voxel values in images directly, instead of features calculated from segmented lesions, as input information; thus, feature calculation or segmentation is not required. In this paper, ML techniques used in CAD schemes for detection and diagnosis of lung nodules in thoracic CT and for detection of polyps in CT colonography (CTC) are surveyed and reviewed.</p>","PeriodicalId":48824,"journal":{"name":"IEICE Transactions on Information and Systems","volume":"E96-D 4","pages":"772-783"},"PeriodicalIF":0.7,"publicationDate":"2013-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1587/transinf.e96.d.772","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40279760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 42
Shrink-wrapped isosurface from cross sectional images. 从横截面图像收缩包裹等面层。
IF 0.7 4区 计算机科学 Pub Date : 2007-12-01 DOI: 10.1093/ietisy/e90-d.12.2070
Y K Choi, J K Hahn

This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching Cubes (MC) algorithm, our method does not extract the iso-density surface (isosurface) directly from the voxel data but calculates the iso-density point (isopoint) first. After building a coarse initial mesh approximating the ideal isosurface by the cell-boundary representation, it metamorphoses the mesh into the final isosurface by a relaxation scheme, called shrink-wrapping process. Compared with the MC algorithm, our method is robust and does not make any cracks on surface. Furthermore, since it is possible to utilize lots of additional isopoints during the surface reconstruction process by extending the adjacency definition, theoretically the resulting surface can be better in quality than the MC algorithm. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images.

本文提出了一种新的表面重建方案,用于从一组层析截面图像近似等值面。与新的Marching Cubes (MC)算法不同,我们的方法不直接从体素数据中提取等密度曲面(isosurface),而是先计算等密度点(isopoint)。在通过单元边界表示建立近似理想等值面的粗糙初始网格后,通过称为收缩包裹过程的松弛方案将网格变形为最终等值面。与MC算法相比,该方法具有较强的鲁棒性,且不产生表面裂纹。此外,由于可以通过扩展邻接定义在曲面重建过程中利用大量额外的等点,理论上得到的曲面质量可以比MC算法更好。实验结果表明,该方法具有较好的鲁棒性和有效性。
{"title":"Shrink-wrapped isosurface from cross sectional images.","authors":"Y K Choi,&nbsp;J K Hahn","doi":"10.1093/ietisy/e90-d.12.2070","DOIUrl":"https://doi.org/10.1093/ietisy/e90-d.12.2070","url":null,"abstract":"<p><p>This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching Cubes (MC) algorithm, our method does not extract the iso-density surface (isosurface) directly from the voxel data but calculates the iso-density point (isopoint) first. After building a coarse initial mesh approximating the ideal isosurface by the cell-boundary representation, it metamorphoses the mesh into the final isosurface by a relaxation scheme, called shrink-wrapping process. Compared with the MC algorithm, our method is robust and does not make any cracks on surface. Furthermore, since it is possible to utilize lots of additional isopoints during the surface reconstruction process by extending the adjacency definition, theoretically the resulting surface can be better in quality than the MC algorithm. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images.</p>","PeriodicalId":48824,"journal":{"name":"IEICE Transactions on Information and Systems","volume":"E90-D 12","pages":"2070-2076"},"PeriodicalIF":0.7,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918906/pdf/nihms178075.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29182217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
IEICE Transactions on Information and Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1