首页 > 最新文献

Remote Sensing Letters最新文献

英文 中文
Recognizing landslides in remote sensing images based on enhancement of information in digital elevation models 根据数字高程模型中的增强信息识别遥感图像中的山体滑坡
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-02-11 DOI: 10.1080/2150704x.2024.2313611
Lu Jia, Xiaopeng Leng, Xingchen Wang, Manyuan Nie
To address the landslide recognition problem in remote sensing images, this paper designs a visual transformer network model based on DEM (digital elevation model) feature enhancement, which is exp...
为解决遥感图像中的滑坡识别问题,本文设计了一种基于 DEM(数字高程模型)特征增强的视觉转换器网络模型,并对其进行了验证。
{"title":"Recognizing landslides in remote sensing images based on enhancement of information in digital elevation models","authors":"Lu Jia, Xiaopeng Leng, Xingchen Wang, Manyuan Nie","doi":"10.1080/2150704x.2024.2313611","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2313611","url":null,"abstract":"To address the landslide recognition problem in remote sensing images, this paper designs a visual transformer network model based on DEM (digital elevation model) feature enhancement, which is exp...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hyperspectral image classification method based on feature enhancement and a hybrid deformable convolution network 基于特征增强和混合可变形卷积网络的高光谱图像分类方法
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-02-09 DOI: 10.1080/2150704x.2024.2311782
Yunji Zhao, Zhihao Zhang, Wenming Bao, Xiaozhuo Xu, Zhifang Gao
In recent years, some hyperspectral image (HSI) classification methods based on deep models have shown excellent performance. Most deep models receive three-dimensional (3D) block structures as inp...
近年来,一些基于深度模型的高光谱图像(HSI)分类方法表现出了卓越的性能。大多数深度模型接收三维(3D)块结构作为输入数据,然后将这些数据进行分类。
{"title":"A hyperspectral image classification method based on feature enhancement and a hybrid deformable convolution network","authors":"Yunji Zhao, Zhihao Zhang, Wenming Bao, Xiaozhuo Xu, Zhifang Gao","doi":"10.1080/2150704x.2024.2311782","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2311782","url":null,"abstract":"In recent years, some hyperspectral image (HSI) classification methods based on deep models have shown excellent performance. Most deep models receive three-dimensional (3D) block structures as inp...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 3-D scattering centre model-based SAR target recognition method using multi-level region matching 基于三维散射中心模型的合成孔径雷达目标识别方法(使用多级区域匹配
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-02-07 DOI: 10.1080/2150704x.2024.2313609
Baiyuan Ding, Ao Zhang, Rui Li
A 3-D scattering centre model-based synthetic aperture radar (SAR) automatic target recognition (ATR) method is proposed. Multi-level dominant scattering areas (DSAs) are generated from the test sa...
本文提出了一种基于三维散射中心模型的合成孔径雷达(SAR)自动目标识别(ATR)方法。多层次的主要散射区域(DSAs)是由测试的合成孔径雷达(SAR)产生的。
{"title":"A 3-D scattering centre model-based SAR target recognition method using multi-level region matching","authors":"Baiyuan Ding, Ao Zhang, Rui Li","doi":"10.1080/2150704x.2024.2313609","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2313609","url":null,"abstract":"A 3-D scattering centre model-based synthetic aperture radar (SAR) automatic target recognition (ATR) method is proposed. Multi-level dominant scattering areas (DSAs) are generated from the test sa...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperspectral image classification using a double-branch hierarchical partial convolution network 使用双分支分层部分卷积网络进行高光谱图像分类
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-02-06 DOI: 10.1080/2150704x.2024.2311784
Zijian Sheng, Guo Cao, Hao Shi, Youqiang Zhang
Recently, convolutional neural network (CNN) and Transformer have been successfully applied in hyperspectral image (HSI) classification. Despite their success, some challenges persist. Popular HSI ...
最近,卷积神经网络(CNN)和变换器已成功应用于高光谱图像(HSI)分类。尽管取得了成功,但一些挑战依然存在。流行的 HSI ...
{"title":"Hyperspectral image classification using a double-branch hierarchical partial convolution network","authors":"Zijian Sheng, Guo Cao, Hao Shi, Youqiang Zhang","doi":"10.1080/2150704x.2024.2311784","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2311784","url":null,"abstract":"Recently, convolutional neural network (CNN) and Transformer have been successfully applied in hyperspectral image (HSI) classification. Despite their success, some challenges persist. Popular HSI ...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139772675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of bias correction methods for IMERG V06 precipitation products: case study in Guangxi, China IMERG V06 降水产品纠偏方法比较分析:中国广西案例研究
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-02-01 DOI: 10.1080/2150704x.2024.2307321
Meiqing Yang, Qian Ni, Xiang Diao, Qiang Xiong
This study investigates the effectiveness of three bias correction methods: linear scaling (LS), local intensity scaling (LOCI), and quantile mapping (QM) in correcting the bias of Integrated Multi...
本研究探讨了三种偏差校正方法:线性缩放(LS)、局部强度缩放(LOCI)和量子映射(QM)在校正综合多光谱仪偏差方面的有效性。
{"title":"Comparative analysis of bias correction methods for IMERG V06 precipitation products: case study in Guangxi, China","authors":"Meiqing Yang, Qian Ni, Xiang Diao, Qiang Xiong","doi":"10.1080/2150704x.2024.2307321","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2307321","url":null,"abstract":"This study investigates the effectiveness of three bias correction methods: linear scaling (LS), local intensity scaling (LOCI), and quantile mapping (QM) in correcting the bias of Integrated Multi...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing Gaofen-3 InSAR time series to reveal land subsidence in Beijing (China) 利用高分三号 InSAR 时间序列揭示北京(中国)的地面沉降情况
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-31 DOI: 10.1080/2150704x.2024.2305174
Yakun Han, Keren Dai, Tao Li, Zhong Lu, Xinzhe Yuan, Xianlin Shi, Chengcheng Liu, N. Wen
{"title":"Utilizing Gaofen-3 InSAR time series to reveal land subsidence in Beijing (China)","authors":"Yakun Han, Keren Dai, Tao Li, Zhong Lu, Xinzhe Yuan, Xianlin Shi, Chengcheng Liu, N. Wen","doi":"10.1080/2150704x.2024.2305174","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2305174","url":null,"abstract":"","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140476769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Range current retrieval fromsentinel-1 SAR ocean product based on deep learning 基于深度学习的圣天诺-1 号合成孔径雷达海洋产品范围海流检索
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-27 DOI: 10.1080/2150704x.2024.2305176
Weizeng Shao, Yuhang Zhou, Yuyi Hu, Yan Li, Yashi Zhou, Qingjun Zhang
In this study, the feasibility of current retrieval from Sentinel-1 (S-1) synthetic aperture radar (SAR) in the radar look/range direction is investigated. S-1 Ocean (OCN) products acquired in inte...
本研究探讨了从哨兵-1(S-1)合成孔径雷达(SAR)在雷达观测/测距方向上进行海流检索的可行性。S-1 Ocean (OCN) 产品是在...
{"title":"Range current retrieval fromsentinel-1 SAR ocean product based on deep learning","authors":"Weizeng Shao, Yuhang Zhou, Yuyi Hu, Yan Li, Yashi Zhou, Qingjun Zhang","doi":"10.1080/2150704x.2024.2305176","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2305176","url":null,"abstract":"In this study, the feasibility of current retrieval from Sentinel-1 (S-1) synthetic aperture radar (SAR) in the radar look/range direction is investigated. S-1 Ocean (OCN) products acquired in inte...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EMAFF-Net: an enhanced multi-scale attentive feature fusion network for building extraction from VHR remote sensing images EMAFF-Net:用于从 VHR 遥感图像中提取建筑物的增强型多尺度注意特征融合网络
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-25 DOI: 10.1080/2150704x.2024.2305624
Lakshmi Vijayan, Akshara Preethy Byju
Automated building extraction is imperative for several geospatial applications such as monitoring disaster-affected buildings and urban planning. Existing deep learning (DL)-based building extract...
自动建筑物提取对于监测受灾害影响的建筑物和城市规划等若干地理空间应用来说势在必行。现有的基于深度学习(DL)的建筑物抽取技术可用于对建筑物进行...
{"title":"EMAFF-Net: an enhanced multi-scale attentive feature fusion network for building extraction from VHR remote sensing images","authors":"Lakshmi Vijayan, Akshara Preethy Byju","doi":"10.1080/2150704x.2024.2305624","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2305624","url":null,"abstract":"Automated building extraction is imperative for several geospatial applications such as monitoring disaster-affected buildings and urban planning. Existing deep learning (DL)-based building extract...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observations of water optical properties during red tide outbreaks off southeast Hokkaido by GCOM-C/SGLI: implications for the development of red tide algorithms 全球海洋观测系统-C/SGLI 对北海道东南部赤潮爆发期间海水光学特性的观测:对赤潮算法开发的影响
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-18 DOI: 10.1080/2150704x.2024.2302948
Eko Siswanto, Jutarak Luang-on, Kazunori Ogata, Hiroto Higa, Mitsuhiro Toratani
A severe red tide event, caused primarily by dinoflagellate Karenia selliformis, occurred during the autumn of 2021 in the waters off southeast Hokkaido and resulted in damage of $70 million to fis...
2021 年秋季,北海道东南部海域发生了严重的赤潮事件,主要是由甲藻 Karenia selliformis 引起的,给渔业造成了 7000 万美元的损失。
{"title":"Observations of water optical properties during red tide outbreaks off southeast Hokkaido by GCOM-C/SGLI: implications for the development of red tide algorithms","authors":"Eko Siswanto, Jutarak Luang-on, Kazunori Ogata, Hiroto Higa, Mitsuhiro Toratani","doi":"10.1080/2150704x.2024.2302948","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2302948","url":null,"abstract":"A severe red tide event, caused primarily by dinoflagellate Karenia selliformis, occurred during the autumn of 2021 in the waters off southeast Hokkaido and resulted in damage of $70 million to fis...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive multimodal feature fusion with frequency domain gate for remote sensing object detection 利用频域门进行自适应多模态特征融合,用于遥感物体探测
IF 2.3 4区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-01-17 DOI: 10.1080/2150704x.2024.2305177
Xu Sun, Yinhui Yu, Qing Cheng
Fusing complementary information of visible and infrared radiation modalities can improve object detection performance for unmanned aerial vehicle (UAV) remote sensing images under insufficient ill...
融合可见光和红外辐射模式的互补信息可提高无人飞行器(UAV)遥感图像在光照不足条件下的目标检测性能。
{"title":"Adaptive multimodal feature fusion with frequency domain gate for remote sensing object detection","authors":"Xu Sun, Yinhui Yu, Qing Cheng","doi":"10.1080/2150704x.2024.2305177","DOIUrl":"https://doi.org/10.1080/2150704x.2024.2305177","url":null,"abstract":"Fusing complementary information of visible and infrared radiation modalities can improve object detection performance for unmanned aerial vehicle (UAV) remote sensing images under insufficient ill...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139481788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Remote Sensing Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1