Introduction: Acinetobacter baumannii is endemic in hospital environments, and since the coronavirus disease 2019 (COVID-19) pandemic, multidrug-resistant A. baumannii has become more potent. This potential evolution is driven by the undetectable numbers of gene resistances it has acquired. We evaluated the antibiotic-resistance genes in isolates from patients in Erbil hospitals.
Methodology: This is the first study to demonstrate the antimicrobial resistance epidemic in Erbil, Iraq. A total of 570 patients, including 100 COVID-19 patients were tested. Isolate identification, characterization, antibiotics susceptibility test, polymerase chain reaction (PCR) amplification of the antibiotic resistance genes in both bacterial chromosome and plasmid, 16S-23S rRNA gene intergenic spacer (ITS) sequencing using the Sanger DNA sequencing, and phylogenetic analysis were used in this study.
Results: Only 13% of A. baumannii isolates were from COVID-19 patients. All isolates were multi-drug resistant due because of 24 resistance genes located in both the bacterial chromosome or the plasmid. blaTEM gene was detected in the isolates; however, aadB was not detected in the isolated bacteria. New carbapenemase genes were identified by Sanger sequencing and resistance genes were acquired by plasmids.
Conclusions: The study identified metabolic differences in the isolates; although all the strains used the coumarate pathway to survive. Several resistance genes were present in the isolates' plasmids and chromosome. There were no strong biofilm producers. The role of the plasmid in A. baumannii resistance development was described based on the results.