首页 > 最新文献

International Journal of Applied Mechanics最新文献

英文 中文
Mechanical quantities prediction of metal cutting by machine learning and simulation data 通过机器学习和模拟数据预测金属切削的机械量
IF 2.9 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-05 DOI: 10.1142/s175882512450087x
Yijin Cheng, Yan Li, Yu Cong, P. Joli, Zhiqiang Feng
{"title":"Mechanical quantities prediction of metal cutting by machine learning and simulation data","authors":"Yijin Cheng, Yan Li, Yu Cong, P. Joli, Zhiqiang Feng","doi":"10.1142/s175882512450087x","DOIUrl":"https://doi.org/10.1142/s175882512450087x","url":null,"abstract":"","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141676729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Mechanics Analysis of Cumulative Damage Leading to Material Loss at Fractal Contact Interfaces Subjected to Fretting 受摩擦的分形接触界面上导致材料损耗的累积损伤力学分析
IF 2.9 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-05 DOI: 10.1142/s1758825124500856
J. Cen, K. Komvopoulos
{"title":"A Mechanics Analysis of Cumulative Damage Leading to Material Loss at Fractal Contact Interfaces Subjected to Fretting","authors":"J. Cen, K. Komvopoulos","doi":"10.1142/s1758825124500856","DOIUrl":"https://doi.org/10.1142/s1758825124500856","url":null,"abstract":"","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141675837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Topology Optimization of Multiple Materials Based on Impedance Mismatching of Wave 基于波阻抗失配的多材料动态拓扑优化
IF 2.9 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-05 DOI: 10.1142/s175882512450090x
Xin Zhang, Fan Wu, Pu Xue
{"title":"Dynamic Topology Optimization of Multiple Materials Based on Impedance Mismatching of Wave","authors":"Xin Zhang, Fan Wu, Pu Xue","doi":"10.1142/s175882512450090x","DOIUrl":"https://doi.org/10.1142/s175882512450090x","url":null,"abstract":"","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141675855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and implementation of a new computational strategy for the prediction of elastoplastic buckling 开发和实施用于预测弹塑性屈曲的新计算策略
IF 2.9 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-05 DOI: 10.1142/s1758825124500911
M. Bel Hadj Amor, M. Ben Bettaieb, S. Mezlini, F. Abed-Meraim
{"title":"Development and implementation of a new computational strategy for the prediction of elastoplastic buckling","authors":"M. Bel Hadj Amor, M. Ben Bettaieb, S. Mezlini, F. Abed-Meraim","doi":"10.1142/s1758825124500911","DOIUrl":"https://doi.org/10.1142/s1758825124500911","url":null,"abstract":"","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141837529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting nonlinearities of electrostatic MEMS resonators for tunable low pressure sensing 利用静电 MEMS 谐振器的非线性特性实现可调低压传感
IF 2.9 3区 工程技术 Q2 MECHANICS Pub Date : 2024-07-05 DOI: 10.1142/s1758825124500893
B. Alattar, M. Ghommem
{"title":"Exploiting nonlinearities of electrostatic MEMS resonators for tunable low pressure sensing","authors":"B. Alattar, M. Ghommem","doi":"10.1142/s1758825124500893","DOIUrl":"https://doi.org/10.1142/s1758825124500893","url":null,"abstract":"","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141675531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Free Vibration of Prestressed Plates and Shallow Shells with Piezoelectric Elements 带压电元件的预应力板和浅壳的自由振动
IF 3.5 3区 工程技术 Q1 Engineering Pub Date : 2024-06-07 DOI: 10.1142/s1758825124500728
A. Kamenskikh, S. Lekomtsev, V. Matveenko
{"title":"Free Vibration of Prestressed Plates and Shallow Shells with Piezoelectric Elements","authors":"A. Kamenskikh, S. Lekomtsev, V. Matveenko","doi":"10.1142/s1758825124500728","DOIUrl":"https://doi.org/10.1142/s1758825124500728","url":null,"abstract":"","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Accelerated Design of Bézier Curve-Based Cellular Metamaterials with Target Properties 基于贝塞尔曲线的具有目标特性的蜂窝超材料的深度学习加速设计
IF 3.5 3区 工程技术 Q1 Engineering Pub Date : 2024-05-30 DOI: 10.1142/s1758825124500674
Chuang Liu, Heng-An Wu

Machine learning has sparked significant interest in the realm of designing mechanical metamaterials. These metamaterials derive their unique properties from microstructures rather than the constituent materials themselves. In this context, we introduce a novel data-driven approach for the design of an orthotropic cellular metamaterials with specific target properties. Our methodology leverages a Bézier curve framework with strategically placed control points. A machine learning model harnesses the positions of these control points to achieve the desired material properties. This process consists of two main steps. Initially, we establish a forward model capable of predicting material properties based on given designs. Then, we construct an inverse model that takes material properties as inputs and produces corresponding design parameters as outputs. Our results demonstrate that the dataset generated using the Bézier curve-based strategy shows a wide range of elastic distributions. Describing the geometry in terms of design parameters, rather than pixel-based figures, enhances the training efficiency of the networks. The dual-network training approach helps avoid contradictions where specific elastic properties may correspond to various geometric designs. We verify the prediction accuracy of the inverse model concerning elastic properties and relative density. The presented approach holds promise for accelerating the design of cellular metamaterials with desired properties.

机器学习引发了人们对机械超材料设计领域的浓厚兴趣。这些超材料的独特性能来自微结构而非组成材料本身。在此背景下,我们引入了一种新颖的数据驱动方法,用于设计具有特定目标特性的各向同性蜂窝超材料。我们的方法利用了贝塞尔曲线框架,并战略性地设置了控制点。机器学习模型利用这些控制点的位置来实现所需的材料特性。这一过程包括两个主要步骤。首先,我们建立一个能够根据给定设计预测材料特性的正向模型。然后,我们构建一个反演模型,将材料属性作为输入,并将相应的设计参数作为输出。我们的结果表明,使用基于贝塞尔曲线的策略生成的数据集显示了广泛的弹性分布。用设计参数而不是基于像素的数字来描述几何形状,可以提高网络的训练效率。双网络训练方法有助于避免特定弹性特性可能对应不同几何设计的矛盾。我们验证了反演模型在弹性特性和相对密度方面的预测准确性。所提出的方法有望加速具有所需特性的蜂窝超材料的设计。
{"title":"Deep Learning Accelerated Design of Bézier Curve-Based Cellular Metamaterials with Target Properties","authors":"Chuang Liu, Heng-An Wu","doi":"10.1142/s1758825124500674","DOIUrl":"https://doi.org/10.1142/s1758825124500674","url":null,"abstract":"<p>Machine learning has sparked significant interest in the realm of designing mechanical metamaterials. These metamaterials derive their unique properties from microstructures rather than the constituent materials themselves. In this context, we introduce a novel data-driven approach for the design of an orthotropic cellular metamaterials with specific target properties. Our methodology leverages a Bézier curve framework with strategically placed control points. A machine learning model harnesses the positions of these control points to achieve the desired material properties. This process consists of two main steps. Initially, we establish a forward model capable of predicting material properties based on given designs. Then, we construct an inverse model that takes material properties as inputs and produces corresponding design parameters as outputs. Our results demonstrate that the dataset generated using the Bézier curve-based strategy shows a wide range of elastic distributions. Describing the geometry in terms of design parameters, rather than pixel-based figures, enhances the training efficiency of the networks. The dual-network training approach helps avoid contradictions where specific elastic properties may correspond to various geometric designs. We verify the prediction accuracy of the inverse model concerning elastic properties and relative density. The presented approach holds promise for accelerating the design of cellular metamaterials with desired properties.</p>","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-Time-Step Parallel Computing Method based on Overlapping Particles for DEM 基于重叠粒子的 DEM 多时间步并行计算方法
IF 3.5 3区 工程技术 Q1 Engineering Pub Date : 2024-05-29 DOI: 10.1142/s1758825124500662
Tong Li, Nian Qi, Peizhong Yang, Xianlong Jin

The application of the discrete element method (DEM) to continuous medium problems is becoming increasingly widespread. In this work, a parallel computing method with multiple time steps based on overlapping particles is proposed. The domain decomposition method (DDM) with overlapping particles method is used to increase the speed up and shorten the computation time and meet the consistency requirements during data transmission. The multi-time-step method (MTSM) is adopted to tackle the matching of asynchronous step boundary. Data are exchanged at the boundaries in each subdomain with a message passing interface (MPI). The computational efficiency of different step ratios in both serial and parallel computing is studied respectively. Numerical examples show that the DEM can effectively handle large structure deformation problems, and provides a shorter calculation time than that of the finite element method (FEM). The DEM with multiple time steps in different subdomains effectively reduces the computation time than that with a single time step in the entire domain. Under fixed step ratio conditions, using parallel computing can save more time than serial computing. This work develops ideas for expanding the application of DEM for large engineering problems.

离散元法(DEM)在连续介质问题中的应用越来越广泛。本研究提出了一种基于重叠粒子的多时间步并行计算方法。采用重叠粒子法的域分解法(DDM)可以提高计算速度,缩短计算时间,并满足数据传输过程中的一致性要求。采用多时步法(MTSM)解决异步步边界匹配问题。数据在每个子域的边界处通过消息传递接口(MPI)进行交换。分别研究了串行和并行计算中不同步长比的计算效率。数值示例表明,DEM 能有效处理大型结构变形问题,而且计算时间比有限元法(FEM)短。在不同子域中采用多时间步长的 DEM 比在整个域中采用单时间步长的 DEM 有效地缩短了计算时间。在固定步长比条件下,使用并行计算比串行计算能节省更多时间。这项工作为扩大 DEM 在大型工程问题中的应用提供了思路。
{"title":"A Multi-Time-Step Parallel Computing Method based on Overlapping Particles for DEM","authors":"Tong Li, Nian Qi, Peizhong Yang, Xianlong Jin","doi":"10.1142/s1758825124500662","DOIUrl":"https://doi.org/10.1142/s1758825124500662","url":null,"abstract":"<p>The application of the discrete element method (DEM) to continuous medium problems is becoming increasingly widespread. In this work, a parallel computing method with multiple time steps based on overlapping particles is proposed. The domain decomposition method (DDM) with overlapping particles method is used to increase the speed up and shorten the computation time and meet the consistency requirements during data transmission. The multi-time-step method (MTSM) is adopted to tackle the matching of asynchronous step boundary. Data are exchanged at the boundaries in each subdomain with a message passing interface (MPI). The computational efficiency of different step ratios in both serial and parallel computing is studied respectively. Numerical examples show that the DEM can effectively handle large structure deformation problems, and provides a shorter calculation time than that of the finite element method (FEM). The DEM with multiple time steps in different subdomains effectively reduces the computation time than that with a single time step in the entire domain. Under fixed step ratio conditions, using parallel computing can save more time than serial computing. This work develops ideas for expanding the application of DEM for large engineering problems.</p>","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Frictionless Normal Contact Model for Flattening Elastoplastic Single Asperity Considering Yield Plateau and Strain Hardening 考虑屈服台阶和应变硬化的扁平弹塑性单面无摩擦法向接触模型
IF 3.5 3区 工程技术 Q1 Engineering Pub Date : 2024-05-27 DOI: 10.1142/s1758825124500650
Juncheng Luo, Jianhua Liu, Huanxiong Xia, Xiaohui Ao, Jian Zhang, Xuerui Zhang, Hui Zhang, Hao Huang, Xin Liu

Contact between solids is a ubiquitous phenomenon in engineering and an enduring topic in tribology. However, material yield plateau and strain hardening are common in ductile metals but rarely considered in contact mechanics. This work develops a three-phase constitutive model that accurately describes the elastic and plastic behaviors considering both yield plateau and strain hardening, and then constructs a finite element model for the contact of a rigid flat and a corresponding elastoplastic hemisphere. The Taguchi method is employed to conduct numerical simulations of material parameters for finding generalized empirical formulations of dimensionless contact load and area versus dimensionless contact interference in the range of ω120. The presented empirical formulations demonstrate good accuracy verified with KE, JG, and Ghaednia’s models. This work fills the gap that the yield plateau has not ever been explored in contact mechanics and provides a basic model for describing the contact behavior of engineering rough surfaces for ductile metal.

固体之间的接触是工程学中无处不在的现象,也是摩擦学中一个经久不衰的话题。然而,材料屈服高原和应变硬化在韧性金属中很常见,但在接触力学中却很少考虑。本研究建立了一个三相构成模型,精确描述了同时考虑屈服平台和应变硬化的弹性和塑性行为,然后构建了刚性平面和相应弹塑性半球接触的有限元模型。采用田口方法对材料参数进行数值模拟,以找到在 ω∗≤120 范围内无量纲接触载荷和面积与无量纲接触干涉的广义经验公式。所提出的经验公式与 KE、JG 和 Ghaednia 的模型进行了验证,显示出良好的准确性。这项研究填补了接触力学中屈服台阶研究的空白,为描述韧性金属工程粗糙表面的接触行为提供了一个基本模型。
{"title":"A Frictionless Normal Contact Model for Flattening Elastoplastic Single Asperity Considering Yield Plateau and Strain Hardening","authors":"Juncheng Luo, Jianhua Liu, Huanxiong Xia, Xiaohui Ao, Jian Zhang, Xuerui Zhang, Hui Zhang, Hao Huang, Xin Liu","doi":"10.1142/s1758825124500650","DOIUrl":"https://doi.org/10.1142/s1758825124500650","url":null,"abstract":"<p>Contact between solids is a ubiquitous phenomenon in engineering and an enduring topic in tribology. However, material yield plateau and strain hardening are common in ductile metals but rarely considered in contact mechanics. This work develops a three-phase constitutive model that accurately describes the elastic and plastic behaviors considering both yield plateau and strain hardening, and then constructs a finite element model for the contact of a rigid flat and a corresponding elastoplastic hemisphere. The Taguchi method is employed to conduct numerical simulations of material parameters for finding generalized empirical formulations of dimensionless contact load and area versus dimensionless contact interference in the range of <span><math altimg=\"eq-00001.gif\" display=\"inline\"><msup><mrow><mi>ω</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup><mo>≤</mo><mn>1</mn><mn>2</mn><mn>0</mn></math></span><span></span>. The presented empirical formulations demonstrate good accuracy verified with KE, JG, and Ghaednia’s models. This work fills the gap that the yield plateau has not ever been explored in contact mechanics and provides a basic model for describing the contact behavior of engineering rough surfaces for ductile metal.</p>","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Convolutional Networks for Localization and Prediction of Scalar Parameters of Fractured Geological Inclusion 卷积网络在断裂地质包裹体标量参数定位和预测中的应用
IF 3.5 3区 工程技术 Q1 Engineering Pub Date : 2024-05-21 DOI: 10.1142/s1758825124500649
Vasily Golubev, Mikhail Anisimov

Seismic inversion is an important part of the modern geological exploration process. Novel applications of deep learning are capable of handling heterogeneous media, but require too much data for training. In this paper, we focus on the prediction of fracture inclusion location and its parameters in rock media and approach the problem in the multi-task manner. For this, several multi-task convolutional neural network (CNN) architectures are proposed and compared. The direct seismic problem is considered in the heterogeneous fractured geological model based on the well-known Marmousi2 model in a two-dimensional case. The model of the deformable solid medium containing slip planes with nonlinear slip conditions on them and explicit–implicit numerical method is applied to obtain the synthetic seismic dataset for CNN training and validation.

地震反演是现代地质勘探过程的重要组成部分。深度学习的新型应用能够处理异质介质,但需要过多的数据进行训练。本文重点关注岩石介质中裂隙包体位置及其参数的预测,并以多任务方式处理该问题。为此,我们提出并比较了几种多任务卷积神经网络(CNN)架构。在二维情况下,基于著名的 Marmousi2 模型,在异质断裂地质模型中考虑了直接地震问题。应用包含非线性滑移条件的滑移面的可变形固体介质模型和显隐数值方法,获得了用于 CNN 训练和验证的合成地震数据集。
{"title":"Application of Convolutional Networks for Localization and Prediction of Scalar Parameters of Fractured Geological Inclusion","authors":"Vasily Golubev, Mikhail Anisimov","doi":"10.1142/s1758825124500649","DOIUrl":"https://doi.org/10.1142/s1758825124500649","url":null,"abstract":"<p>Seismic inversion is an important part of the modern geological exploration process. Novel applications of deep learning are capable of handling heterogeneous media, but require too much data for training. In this paper, we focus on the prediction of fracture inclusion location and its parameters in rock media and approach the problem in the multi-task manner. For this, several multi-task convolutional neural network (CNN) architectures are proposed and compared. The direct seismic problem is considered in the heterogeneous fractured geological model based on the well-known Marmousi2 model in a two-dimensional case. The model of the deformable solid medium containing slip planes with nonlinear slip conditions on them and explicit–implicit numerical method is applied to obtain the synthetic seismic dataset for CNN training and validation.</p>","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Applied Mechanics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1