Hong-ying Sha, Jing-quan Chen, Juan Chen, Peng-yue Zhang, Pu Wang, Lu-ping Chen, Guo-xiang Cheng, Jian-hong Zhu
To investigate nuclear donor and cytoplast recipient mitochondria fate and their effects on generation of interspecies somatic cell nuclear transfer (iSCNT)-derived human embryonic stem (ES)-like cells, iSCNT embryos were reconstructed between enucleated goat oocytes and human neural stem cells (hNSCs). A total of 10.74% cleaved embryos (13/121) developed to blastocyst stage. One typical primary ES-like (tpES-like) colony and two nontypical primary ES-like (non-tpES-like) colonies designated as non-tpES-like cell-1 and non-tpES-like cell-2, respectively, were obtained from the inner cell masses of iSCNT blastocysts. The tpES-like cells expressed ESC markers. Both human and goat mtDNA could be detected in the embryos at 2-8-, 16-32-cell, and blastocyst stages, and in tpES-like colony and two non-tpES-like colonies. Human mtDNA copies per cell from embryos at two- to eight-cell stage to the three colonies maintain almost its original level, whereas 2.88 x 10(5) goat mtDNA copies per oocyte decreased to 10.8 copies per tpES-like cell, 493 copies per non-tpES-like cell-1, and 77.6 copies per non-tpES-like cell-2, resulting in 43.75% (8.4/19.2), 1.24% (6.2/499), and 14.63% (13.3/90.9) mtDNA content in tpES-like cell, non-tpES-like cell-1, and non-tpES-like cell-2 was that of nuclear donor, respectively. Human-specific Tfam and Polg mRNA could be detected in cells of the three colonies. However, tpES-like colony failed to be passaged. The mRNA level of CoxIV encoded by nuclear donor in tpES-like cell was higher than that in non-tpES-like cell, but significantly lower than that of human ESC, suggesting proper nuclear-cytoplasmic communication would not be established in tpES-like cells. Thus, the data suggest that (1) goat oocytes could reprogram human neural stem cells (hNSCs) into embryonic state and further support the inner cell mass (ICM) of iSCNT blastocyst to form tpES-like colony; (2) nuclear donor mtDNA could be replicated and maintain its original level during the reduction of recipient mitochondrial DNA copies, (3) nuclear-cytoplasmic communication and recipient mtDNA copies might affect the derivation of iSCNT-derived ES-like cells.
{"title":"Fates of donor and recipient mitochondrial DNA during generation of interspecies SCNT-derived human ES-like cells.","authors":"Hong-ying Sha, Jing-quan Chen, Juan Chen, Peng-yue Zhang, Pu Wang, Lu-ping Chen, Guo-xiang Cheng, Jian-hong Zhu","doi":"10.1089/clo.2009.0021","DOIUrl":"https://doi.org/10.1089/clo.2009.0021","url":null,"abstract":"<p><p>To investigate nuclear donor and cytoplast recipient mitochondria fate and their effects on generation of interspecies somatic cell nuclear transfer (iSCNT)-derived human embryonic stem (ES)-like cells, iSCNT embryos were reconstructed between enucleated goat oocytes and human neural stem cells (hNSCs). A total of 10.74% cleaved embryos (13/121) developed to blastocyst stage. One typical primary ES-like (tpES-like) colony and two nontypical primary ES-like (non-tpES-like) colonies designated as non-tpES-like cell-1 and non-tpES-like cell-2, respectively, were obtained from the inner cell masses of iSCNT blastocysts. The tpES-like cells expressed ESC markers. Both human and goat mtDNA could be detected in the embryos at 2-8-, 16-32-cell, and blastocyst stages, and in tpES-like colony and two non-tpES-like colonies. Human mtDNA copies per cell from embryos at two- to eight-cell stage to the three colonies maintain almost its original level, whereas 2.88 x 10(5) goat mtDNA copies per oocyte decreased to 10.8 copies per tpES-like cell, 493 copies per non-tpES-like cell-1, and 77.6 copies per non-tpES-like cell-2, resulting in 43.75% (8.4/19.2), 1.24% (6.2/499), and 14.63% (13.3/90.9) mtDNA content in tpES-like cell, non-tpES-like cell-1, and non-tpES-like cell-2 was that of nuclear donor, respectively. Human-specific Tfam and Polg mRNA could be detected in cells of the three colonies. However, tpES-like colony failed to be passaged. The mRNA level of CoxIV encoded by nuclear donor in tpES-like cell was higher than that in non-tpES-like cell, but significantly lower than that of human ESC, suggesting proper nuclear-cytoplasmic communication would not be established in tpES-like cells. Thus, the data suggest that (1) goat oocytes could reprogram human neural stem cells (hNSCs) into embryonic state and further support the inner cell mass (ICM) of iSCNT blastocyst to form tpES-like colony; (2) nuclear donor mtDNA could be replicated and maintain its original level during the reduction of recipient mitochondrial DNA copies, (3) nuclear-cytoplasmic communication and recipient mtDNA copies might affect the derivation of iSCNT-derived ES-like cells.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":" ","pages":"497-507"},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2009.0021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40036589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We previously reported a feeder-free culture method for pure production of subculturable vascular endothelial cells (VECs) from cynomolgus monkey embryonic stem cells (cmESCs) without as using cell-sorting technique. By this method, canonical vascular endothelial (VE)-cadherin/platelet-endothelial cell adhesion molecule 1 (PECAM1)-positive VECs (c-VECs) and atypical VE-cadherin/PECAM1-negative VECs (a-VECs) were generated without a contamination by pericytes, lymphatic endothelial cells, or immature ES cells. More recently, we established a unique culture technique to maintain human ESCs (hESCs) under a feeder-free and recombinant cytokine-free condition. Combining these two systems, we have successfully generated pure VECs from two lines of hESCs, khES-1 and khES-3, under a completely feeder-free condition. Our method is very simple: spheres generated from hESCs by floating culture using differentiation media supplemented with vascular endothelial growth factor, bone morphogenetic protein 4, stem cell factor, FMS-related tyrosine kinase-3 ligand, and interleukin 3 (IL3) and IL6 were cultured on gelatin-coated plates. Cell passage was performed by an ordinary enzymatic treatment. The hESC-derived differentiated cells demosntrated cord-forming activities and acetylated low-density lipoprotein-uptaking capacities. Moreover, they exclusively expressed von Willebrand factor and endothelial nitric oxide synthase. Flow cytometric analyses indicate that khES-3 generated both c-VECs and a-VECs as in the case of cmESCs. By contrast, khES-1 produced only a-VECs, which nonetheless demonstrated effective recruitment into neovascularity in vivo. Interestingly, a-VECs turned to express PECAM1 after transplantation into immunodeficient mice. The hESC-derived VECs were subculturable at least up to 10 passages without functional depression. Our method does not require a presorting processes to enrich progenitor fractions such as CD34-positive or kinase insert domain receptor (KDR)-positive cells, providing the most efficient and easiest technique for VEC production from hESCs.
{"title":"High-efficiency production of subculturable vascular endothelial cells from feeder-free human embryonic stem cells without cell-sorting technique.","authors":"Masako Nakahara, Naoko Nakamura, Satoko Matsuyama, Yoshiko Yogiashi, Kazuki Yasuda, Yasushi Kondo, Akira Yuo, Kumiko Saeki","doi":"10.1089/clo.2009.0023","DOIUrl":"https://doi.org/10.1089/clo.2009.0023","url":null,"abstract":"<p><p>We previously reported a feeder-free culture method for pure production of subculturable vascular endothelial cells (VECs) from cynomolgus monkey embryonic stem cells (cmESCs) without as using cell-sorting technique. By this method, canonical vascular endothelial (VE)-cadherin/platelet-endothelial cell adhesion molecule 1 (PECAM1)-positive VECs (c-VECs) and atypical VE-cadherin/PECAM1-negative VECs (a-VECs) were generated without a contamination by pericytes, lymphatic endothelial cells, or immature ES cells. More recently, we established a unique culture technique to maintain human ESCs (hESCs) under a feeder-free and recombinant cytokine-free condition. Combining these two systems, we have successfully generated pure VECs from two lines of hESCs, khES-1 and khES-3, under a completely feeder-free condition. Our method is very simple: spheres generated from hESCs by floating culture using differentiation media supplemented with vascular endothelial growth factor, bone morphogenetic protein 4, stem cell factor, FMS-related tyrosine kinase-3 ligand, and interleukin 3 (IL3) and IL6 were cultured on gelatin-coated plates. Cell passage was performed by an ordinary enzymatic treatment. The hESC-derived differentiated cells demosntrated cord-forming activities and acetylated low-density lipoprotein-uptaking capacities. Moreover, they exclusively expressed von Willebrand factor and endothelial nitric oxide synthase. Flow cytometric analyses indicate that khES-3 generated both c-VECs and a-VECs as in the case of cmESCs. By contrast, khES-1 produced only a-VECs, which nonetheless demonstrated effective recruitment into neovascularity in vivo. Interestingly, a-VECs turned to express PECAM1 after transplantation into immunodeficient mice. The hESC-derived VECs were subculturable at least up to 10 passages without functional depression. Our method does not require a presorting processes to enrich progenitor fractions such as CD34-positive or kinase insert domain receptor (KDR)-positive cells, providing the most efficient and easiest technique for VEC production from hESCs.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":"11 4","pages":"509-22"},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2009.0023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28607852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paola Spitalieri, Giancarlo Cortese, Adalgisa Pietropolli, Antonio Filareto, Susanna Dolci, Francesca Gioia Klinger, Emiliano Giardina, Silvia Di Cesare, Laura Bernardini, Davide Lauro, M Lucia Scaldaferri, H Lucia Scaldaferri, Gennaro Citro, Giuseppe Novelli, Massimo De Felici, Federica Sangiuolo
In this article we used immunohistochemistry and FACS analyses to show that cells expressing markers typical of human stem cells such as SSEA4, OCT-4, ALP, and CD117 are present within the cytotrophoblastic tissue of human fetal chorionic villus samples (CVSs). After immunoselection of CV cells for SSEA4, FACS analyses showed an increased number of cells positive for OCT-4 and ALP and a small percentage (around 4%) of side population (SP) cells. In the same cell population, RT-PCR indicated the presence of OCT-4, NANOG, and SOX2 transcripts, also typical of stem cells. Depending on the in vitro conditions, a subset of SSEA4+ cells formed colonies resembling hESCs, with limited self renewal ability. At the same time, these cells were able to differentiate in vitro into derivatives of all three germ layers. When inoculated into immunocompromised mice, SSEA4+ cells did not form teratomas but were able to populate depleted hematopoietic tissues. Moreover, after injection into mouse blastocysts, they were incorporated into the inner cell mass and could be traced into several tissues of the adult chimeric mice. Finally, we show that SSEA4+ cells isolated from fetuses affected by Spinal Muscular Atrophy (SMA) can be genetically corrected with high efficiency in culture by Small Fragment Homologous Recombination (SFHR), a gene targeting approach. Taken together, our results indicate that SSEA4+ cells obtained from human CVSs contain a subpopulation of multipotent cells that we propose to name Human Cytotrophoblastic-derived Multipotent Cells (hCTMCs). These cells may be a safe and convenient source of cells for cell-based therapy, as well as an ideal target for in utero fetal gene therapy.
{"title":"Identification of multipotent cytotrophoblast cells from human first trimester chorionic villi.","authors":"Paola Spitalieri, Giancarlo Cortese, Adalgisa Pietropolli, Antonio Filareto, Susanna Dolci, Francesca Gioia Klinger, Emiliano Giardina, Silvia Di Cesare, Laura Bernardini, Davide Lauro, M Lucia Scaldaferri, H Lucia Scaldaferri, Gennaro Citro, Giuseppe Novelli, Massimo De Felici, Federica Sangiuolo","doi":"10.1089/clo.2009.0046","DOIUrl":"https://doi.org/10.1089/clo.2009.0046","url":null,"abstract":"<p><p>In this article we used immunohistochemistry and FACS analyses to show that cells expressing markers typical of human stem cells such as SSEA4, OCT-4, ALP, and CD117 are present within the cytotrophoblastic tissue of human fetal chorionic villus samples (CVSs). After immunoselection of CV cells for SSEA4, FACS analyses showed an increased number of cells positive for OCT-4 and ALP and a small percentage (around 4%) of side population (SP) cells. In the same cell population, RT-PCR indicated the presence of OCT-4, NANOG, and SOX2 transcripts, also typical of stem cells. Depending on the in vitro conditions, a subset of SSEA4+ cells formed colonies resembling hESCs, with limited self renewal ability. At the same time, these cells were able to differentiate in vitro into derivatives of all three germ layers. When inoculated into immunocompromised mice, SSEA4+ cells did not form teratomas but were able to populate depleted hematopoietic tissues. Moreover, after injection into mouse blastocysts, they were incorporated into the inner cell mass and could be traced into several tissues of the adult chimeric mice. Finally, we show that SSEA4+ cells isolated from fetuses affected by Spinal Muscular Atrophy (SMA) can be genetically corrected with high efficiency in culture by Small Fragment Homologous Recombination (SFHR), a gene targeting approach. Taken together, our results indicate that SSEA4+ cells obtained from human CVSs contain a subpopulation of multipotent cells that we propose to name Human Cytotrophoblastic-derived Multipotent Cells (hCTMCs). These cells may be a safe and convenient source of cells for cell-based therapy, as well as an ideal target for in utero fetal gene therapy.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":"11 4","pages":"535-56"},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2009.0046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28607854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In March 2009, the fifth International Meeting of the Stem Cell Network North Rhine Westphalia took place in Aachen, Germany. Numerous fascinating presentations about reprogramming, stem cells, and therapeutic devices were given. A number of excellent speakers from all over the world were invited to present their work. Over 20 high-profile presentations were given on 2 days under the five different topics: reprogramming, mechanisms regulating stem cells, stem cell differentiation, cancer stem cells, and therapeutic devices. Young researchers had opportunity to present their work in over 120 posters. The meeting started with the main topic: reprogramming. Austin J. Cooney, Baylor College of Medicine, Houston, USA, gave an exiting presentation about alternative pathways to maintain pluripotency. His work is focused on the regulation of Oct4 by nuclear receptors, specifically LRH-1, which regulates directly Oct4 expression and the role of canonical wnt signalling relating to b-catenin, which potentiates reprogramming (Gu et al., 2005). His group showed that ES cells deficient in LRH-1 and b-catenin lose their pluripotency faster than wild-type ES cells. The group established a model for generation of b-catenin = ES cells. In a second model, the effect of LRH-1 was analyzed and the effect of BIO, a GSK3b inhibitor, was evaluated. The results showed that wnt3a induces LRH-1 in a b-catenin-dependent manner, because b-catenin binds directly to TCF elements in the LRH-1 promotor (Lluis and Cosma, 2009; Mullen et al., 2007). Theodore Rasmussen, University of Connecticut, USA, talked about direct reprogramming of somatic cells: from ES cell fusion to iPS. Rasmussen and his working group chose the method of somatic cell nuclear transfer (SCNT) to reprogram differentiated somatic cells to a more pluripotent state. He pointed out that iPS technology is highly promising because it can yield immunocompatible cells by relatively simple, noncontroversial means. Rasmussen’s group used the superb cell biology allowed by SCNT to study rapid and dynamic chromatin remodeling events such as histone replacement, which occur within hours after nuclear transfer with kinetics similar to those of preimplantation development (Chang et al., 2005). FMR reprogramming takes longer than SCNT, but is faster than iPS. FMR is well suited for genetic analyses, because polymorphic differences between the somatic and ES cell fusion partners can be used to trace reprogrammed gene expression (Ambrosi et al., 2007). In addition, genes can be manipulated in ES cells prior to fusion to evaluate their importance for reprogramming. Together, SCNT and FMR offer unique advantages for the investigation of reprogramming mechanisms. The presentation of Sir John B. Gurdon, Cambridge, UK, a pioneer in this field, was focused on nuclear reprogramming by nuclear transfer. John Gurdon and his group try to identify the components of eggs that cause the nuclear reprogramming. One method is to transfer mu
{"title":"Pluripotency and reprogramming: meeting report on the Fifth International Meeting of the Stem Cell Network North Rhine Westphalia.","authors":"Gesine Fleischmann, Peter A Horn","doi":"10.1089/clo.2009.0059","DOIUrl":"https://doi.org/10.1089/clo.2009.0059","url":null,"abstract":"In March 2009, the fifth International Meeting of the Stem Cell Network North Rhine Westphalia took place in Aachen, Germany. Numerous fascinating presentations about reprogramming, stem cells, and therapeutic devices were given. A number of excellent speakers from all over the world were invited to present their work. Over 20 high-profile presentations were given on 2 days under the five different topics: reprogramming, mechanisms regulating stem cells, stem cell differentiation, cancer stem cells, and therapeutic devices. Young researchers had opportunity to present their work in over 120 posters. The meeting started with the main topic: reprogramming. Austin J. Cooney, Baylor College of Medicine, Houston, USA, gave an exiting presentation about alternative pathways to maintain pluripotency. His work is focused on the regulation of Oct4 by nuclear receptors, specifically LRH-1, which regulates directly Oct4 expression and the role of canonical wnt signalling relating to b-catenin, which potentiates reprogramming (Gu et al., 2005). His group showed that ES cells deficient in LRH-1 and b-catenin lose their pluripotency faster than wild-type ES cells. The group established a model for generation of b-catenin = ES cells. In a second model, the effect of LRH-1 was analyzed and the effect of BIO, a GSK3b inhibitor, was evaluated. The results showed that wnt3a induces LRH-1 in a b-catenin-dependent manner, because b-catenin binds directly to TCF elements in the LRH-1 promotor (Lluis and Cosma, 2009; Mullen et al., 2007). Theodore Rasmussen, University of Connecticut, USA, talked about direct reprogramming of somatic cells: from ES cell fusion to iPS. Rasmussen and his working group chose the method of somatic cell nuclear transfer (SCNT) to reprogram differentiated somatic cells to a more pluripotent state. He pointed out that iPS technology is highly promising because it can yield immunocompatible cells by relatively simple, noncontroversial means. Rasmussen’s group used the superb cell biology allowed by SCNT to study rapid and dynamic chromatin remodeling events such as histone replacement, which occur within hours after nuclear transfer with kinetics similar to those of preimplantation development (Chang et al., 2005). FMR reprogramming takes longer than SCNT, but is faster than iPS. FMR is well suited for genetic analyses, because polymorphic differences between the somatic and ES cell fusion partners can be used to trace reprogrammed gene expression (Ambrosi et al., 2007). In addition, genes can be manipulated in ES cells prior to fusion to evaluate their importance for reprogramming. Together, SCNT and FMR offer unique advantages for the investigation of reprogramming mechanisms. The presentation of Sir John B. Gurdon, Cambridge, UK, a pioneer in this field, was focused on nuclear reprogramming by nuclear transfer. John Gurdon and his group try to identify the components of eggs that cause the nuclear reprogramming. One method is to transfer mu","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":"11 4","pages":"473-5"},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2009.0059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28607850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luke F S Beebe, Stephen J McIlfatrick, Mark B Nottle
Somatic cell nuclear transfer (SCNT) is a useful technique for the production of transgenic pigs that can be used for biomedical research. However, the efficiency of SCNT in pigs is low. In this study, we examined the effect of two postactivation treatments, cytochalasin B (CB) and trichostatin A (TSA), on the in vitro development of porcine SCNT embryos. Treating porcine parthenotes with 7.5 microg/mL CB for 3 h after electrical activation was effective in preventing the extrusion of the second polar body in 65% of the oocytes compared to 17% in the control group. Treating SCNT embryos with CB for 3 h after electrical activation significantly increased the average blastocyst cell number compared to the control group (CB treatment 51, Control 34, p < 0.05). Treatment of porcine SCNT embryos with CB for 3 h and 50 nM TSA for 24 h after electrical activation resulted in a threefold increase in blastocyst rate (CB + TSA 64%, CB 20%, p < 0.05) and an increase in the average blastocyst cell number (CB + TSA 63, CB 46, p < 0.05), compared to CB treatment alone. These results show that treatment with TSA and CB significantly improves the in vitro morphological development and quality of porcine SCNT embryos.
{"title":"Cytochalasin B and trichostatin a treatment postactivation improves in vitro development of porcine somatic cell nuclear transfer embryos.","authors":"Luke F S Beebe, Stephen J McIlfatrick, Mark B Nottle","doi":"10.1089/clo.2009.0029","DOIUrl":"https://doi.org/10.1089/clo.2009.0029","url":null,"abstract":"<p><p>Somatic cell nuclear transfer (SCNT) is a useful technique for the production of transgenic pigs that can be used for biomedical research. However, the efficiency of SCNT in pigs is low. In this study, we examined the effect of two postactivation treatments, cytochalasin B (CB) and trichostatin A (TSA), on the in vitro development of porcine SCNT embryos. Treating porcine parthenotes with 7.5 microg/mL CB for 3 h after electrical activation was effective in preventing the extrusion of the second polar body in 65% of the oocytes compared to 17% in the control group. Treating SCNT embryos with CB for 3 h after electrical activation significantly increased the average blastocyst cell number compared to the control group (CB treatment 51, Control 34, p < 0.05). Treatment of porcine SCNT embryos with CB for 3 h and 50 nM TSA for 24 h after electrical activation resulted in a threefold increase in blastocyst rate (CB + TSA 64%, CB 20%, p < 0.05) and an increase in the average blastocyst cell number (CB + TSA 63, CB 46, p < 0.05), compared to CB treatment alone. These results show that treatment with TSA and CB significantly improves the in vitro morphological development and quality of porcine SCNT embryos.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":" ","pages":"477-82"},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2009.0029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40035493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moysés dos Santos Miranda, Fabiana Fernandes Bressan, Karina Gottardello Zecchin, Anibal Eugênio Vercesi, Ligia Garcia Mesquita, Giovana Krempel Fonseca Merighe, William Allan King, Otávio Mitio Ohashi, José Rodrigo Valim Pimentel, Felipe Perecin, Flávio Vieira Meirelles
Cell cycle synchronization by serum starvation (SS) induces apoptosis in somatic cells. This side effect of SS is hypothesized to negatively affect the outcome of somatic cell nuclear transfer (SCNT). We determined whether apoptotic fibroblasts affect SCNT yields. Serum-starved, adult, bovine fibroblasts were stained with annexin V-FITC/propidium iodide to allow apoptosis detection by flow cytometry. Positive and negative cells sorted by fluorescence activated cell sorting (FACS) and an unsorted control group were used as nuclear donors for SCNT. Reconstructed embryos were cultured in vitro and transferred to synchronized recipients. Apoptosis had no effect on fusion and cleavage rates; however, it resulted in reductions in blastocyst production and quality measured by apoptotic index. However, reconstructed embryos with apoptotic cells resulted in pregnancy rates similar to that of the control on day 30, and generated one live female calf. In conclusion, we showed that apoptotic cells present in serum-starved cultures negatively affect embryo production after SCNT without compromising full-term development. Further studies will evaluate the ability of the oocyte to reprogram cells in specific phases of apoptosis.
{"title":"Serum-starved apoptotic fibroblasts reduce blastocyst production but enable development to term after SCNT in cattle.","authors":"Moysés dos Santos Miranda, Fabiana Fernandes Bressan, Karina Gottardello Zecchin, Anibal Eugênio Vercesi, Ligia Garcia Mesquita, Giovana Krempel Fonseca Merighe, William Allan King, Otávio Mitio Ohashi, José Rodrigo Valim Pimentel, Felipe Perecin, Flávio Vieira Meirelles","doi":"10.1089/clo.2009.0028","DOIUrl":"https://doi.org/10.1089/clo.2009.0028","url":null,"abstract":"<p><p>Cell cycle synchronization by serum starvation (SS) induces apoptosis in somatic cells. This side effect of SS is hypothesized to negatively affect the outcome of somatic cell nuclear transfer (SCNT). We determined whether apoptotic fibroblasts affect SCNT yields. Serum-starved, adult, bovine fibroblasts were stained with annexin V-FITC/propidium iodide to allow apoptosis detection by flow cytometry. Positive and negative cells sorted by fluorescence activated cell sorting (FACS) and an unsorted control group were used as nuclear donors for SCNT. Reconstructed embryos were cultured in vitro and transferred to synchronized recipients. Apoptosis had no effect on fusion and cleavage rates; however, it resulted in reductions in blastocyst production and quality measured by apoptotic index. However, reconstructed embryos with apoptotic cells resulted in pregnancy rates similar to that of the control on day 30, and generated one live female calf. In conclusion, we showed that apoptotic cells present in serum-starved cultures negatively affect embryo production after SCNT without compromising full-term development. Further studies will evaluate the ability of the oocyte to reprogram cells in specific phases of apoptosis.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":" ","pages":"565-73"},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2009.0028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40035494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew B Sharabi, Sung-Hyung Lee, Margaret A Goodell, Xue F Huang, Si-Yi Chen
The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.
{"title":"Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.","authors":"Andrew B Sharabi, Sung-Hyung Lee, Margaret A Goodell, Xue F Huang, Si-Yi Chen","doi":"10.1089/clo.2009.0020","DOIUrl":"https://doi.org/10.1089/clo.2009.0020","url":null,"abstract":"<p><p>The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":"11 4","pages":"523-33"},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2009.0020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28607853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The somatic cell nuclear transfer technique has been applied to various mammals to produce cloned animals; however, a standardized method is not applicable to all species. We aimed here to develop optimum procedures for somatic cell cloning in nonhuman primates, using common marmosets. First, we confirmed that parthenogenetic activation of in vitro matured oocytes was successfully induced by electrical stimulation (three cycles of 150 V/mm, 50 microsec x 2, 20 min intervals), and this condition was applied to the egg activation procedure in the subsequent experiments. Next, nuclear transfer to recipient enucleated oocytes was performed 1 h before, immediately after, or 1 h after egg activation treatment. The highest developmental rate was observed when nuclear transfer was performed 1 h before activation, but none of the cloned embryos developed beyond the eight-cell stage. To investigate the causes of the low developmental potential of cloned embryos, a study was performed to determine whether the presence of metaphase II (MII) chromosome in recipient ooplasm has an effect on developmental potential. As a result, only tetraploid cloned embryos produced by transferring a donor cell into a recipient bearing the MII chromosome developed into blastocysts (66.7%). In contrast, neither parthenogenetic embryos nor cloned embryos (whether diploid or tetraploid) produced using enucleated oocytes developed past the eight-cell stage. These results suggest that MII chromosome, or cytoplasm proximal to the MII chromosome, plays a major role in the development of cloned embryos in common marmosets.
{"title":"Preimplantation development of somatic cell cloned embryos in the common marmoset (Callithrix jacchus).","authors":"Yusuke Sotomaru, Reiko Hirakawa, Akiko Shimada, Seiji Shiozawa, Ayako Sugawara, Ryo Oiwa, Asako Nobukiyo, Hideyuki Okano, Norikazu Tamaoki, Tatsuji Nomura, Eiso Hiyama, Erika Sasaki","doi":"10.1089/clo.2009.0005","DOIUrl":"https://doi.org/10.1089/clo.2009.0005","url":null,"abstract":"<p><p>The somatic cell nuclear transfer technique has been applied to various mammals to produce cloned animals; however, a standardized method is not applicable to all species. We aimed here to develop optimum procedures for somatic cell cloning in nonhuman primates, using common marmosets. First, we confirmed that parthenogenetic activation of in vitro matured oocytes was successfully induced by electrical stimulation (three cycles of 150 V/mm, 50 microsec x 2, 20 min intervals), and this condition was applied to the egg activation procedure in the subsequent experiments. Next, nuclear transfer to recipient enucleated oocytes was performed 1 h before, immediately after, or 1 h after egg activation treatment. The highest developmental rate was observed when nuclear transfer was performed 1 h before activation, but none of the cloned embryos developed beyond the eight-cell stage. To investigate the causes of the low developmental potential of cloned embryos, a study was performed to determine whether the presence of metaphase II (MII) chromosome in recipient ooplasm has an effect on developmental potential. As a result, only tetraploid cloned embryos produced by transferring a donor cell into a recipient bearing the MII chromosome developed into blastocysts (66.7%). In contrast, neither parthenogenetic embryos nor cloned embryos (whether diploid or tetraploid) produced using enucleated oocytes developed past the eight-cell stage. These results suggest that MII chromosome, or cytoplasm proximal to the MII chromosome, plays a major role in the development of cloned embryos in common marmosets.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":"11 4","pages":"575-83"},"PeriodicalIF":0.0,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2009.0005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28607855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mavi Camarasa, Daniel Brison, Susan J Kimber, Alan H Handyside
Human embryonic stem cell (hESC) growth is dependent on various factors released by feeder cells. Some of them have already been elucidated, although much research is still needed to understand the biology of stem cell maintenance in culture. Traditionally, primary mouse embryonic fibroblasts (PMEFs) have been used as feeder layers, and both murine and human fibroblast cell lines have been shown to support pluripotency and self-renewal of hESC. Here we report the derivation of three new mouse embryonic fibroblast cell lines, MEFLU-M, MEFLU-T, and MEFLU-TB, with different properties regarding growth and support for undifferentiated hESCs. MEFLU-TB is able to support continuous growth of the newly derived Man-1, as well as H1, HUES-1, HUES-7, HUES-8, and HUES-9 human embryonic stem cell lines. After more than 50 passages and doublings, MEFLU-TB feeders compare to early passage primary mouse embryonic fibroblasts in their ability to support undifferentiated hESC growth. Our results contradict a previous paradigm that PMEFs tend to lose their capacity to support proliferation of hESCs with increasing passages, and show that the MEFLU-TB mouse embryonic fibroblast cell line and its conditioned medium have the potential to support the maintenance of hESC lines. Also, our results clearly show that spontaneous immortalization of primary fibroblasts can be achieved in culture without any chemical addition or genetic modification.
{"title":"Naturally immortalised mouse embryonic fibroblast lines support human embryonic stem cell growth.","authors":"Mavi Camarasa, Daniel Brison, Susan J Kimber, Alan H Handyside","doi":"10.1089/clo.2008.0082","DOIUrl":"https://doi.org/10.1089/clo.2008.0082","url":null,"abstract":"<p><p>Human embryonic stem cell (hESC) growth is dependent on various factors released by feeder cells. Some of them have already been elucidated, although much research is still needed to understand the biology of stem cell maintenance in culture. Traditionally, primary mouse embryonic fibroblasts (PMEFs) have been used as feeder layers, and both murine and human fibroblast cell lines have been shown to support pluripotency and self-renewal of hESC. Here we report the derivation of three new mouse embryonic fibroblast cell lines, MEFLU-M, MEFLU-T, and MEFLU-TB, with different properties regarding growth and support for undifferentiated hESCs. MEFLU-TB is able to support continuous growth of the newly derived Man-1, as well as H1, HUES-1, HUES-7, HUES-8, and HUES-9 human embryonic stem cell lines. After more than 50 passages and doublings, MEFLU-TB feeders compare to early passage primary mouse embryonic fibroblasts in their ability to support undifferentiated hESC growth. Our results contradict a previous paradigm that PMEFs tend to lose their capacity to support proliferation of hESCs with increasing passages, and show that the MEFLU-TB mouse embryonic fibroblast cell line and its conditioned medium have the potential to support the maintenance of hESC lines. Also, our results clearly show that spontaneous immortalization of primary fibroblasts can be achieved in culture without any chemical addition or genetic modification.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":"11 3","pages":"453-62"},"PeriodicalIF":0.0,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2008.0082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28376602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raul E Piña-Aguilar, Janet Lopez-Saucedo, Richard Sheffield, Lilia I Ruiz-Galaz, Jose de J Barroso-Padilla, Antonio Gutiérrez-Gutiérrez
Recent accomplishments in the fields of nuclear transfer and genomics, such as the cloned offspring production from frozen mouse cells, cryopreserved at not too low temperatures without cryoprotectors; or the sequencing of wooly mammoth genome, have opened the opportunity for the revival of extinct species. As expected, they are receiving a lot of publicity in the media and also scientific attention. Furthermore, it was recently published the "revival" of the first extinct subspecie: the Pyrenean ibex (Capra pyrenaica pyrenaica), a wild goat extinct in 2000. This strengthens the field of cloning as it had been tarnished by induced pluripotent stem cells (iPS) and other methods of reprogramming. However, for biological conservation purposes, cloning is not generally accepted as an alternative for animal conservation, and there is an ongoing debate between reproductive scientists and conservation specialists. Although we believe that nuclear transfer technologies have an opportunity in conservation efforts for some species that are on the brink of extinction and that population status, geographical isolation, reproductive characteristics, and human pressure create a situation that is almost unsustainable. In this article we discuss the barriers in cloning mammoths and cloning controversies in conservation from a zoological perspective, citing the species that might benefit from nuclear transfer techniques in the arduous journey so as not to disappear forever from this, our world.
{"title":"Revival of extinct species using nuclear transfer: hope for the mammoth, true for the Pyrenean ibex, but is it time for \"conservation cloning\"?","authors":"Raul E Piña-Aguilar, Janet Lopez-Saucedo, Richard Sheffield, Lilia I Ruiz-Galaz, Jose de J Barroso-Padilla, Antonio Gutiérrez-Gutiérrez","doi":"10.1089/clo.2009.0026","DOIUrl":"https://doi.org/10.1089/clo.2009.0026","url":null,"abstract":"<p><p>Recent accomplishments in the fields of nuclear transfer and genomics, such as the cloned offspring production from frozen mouse cells, cryopreserved at not too low temperatures without cryoprotectors; or the sequencing of wooly mammoth genome, have opened the opportunity for the revival of extinct species. As expected, they are receiving a lot of publicity in the media and also scientific attention. Furthermore, it was recently published the \"revival\" of the first extinct subspecie: the Pyrenean ibex (Capra pyrenaica pyrenaica), a wild goat extinct in 2000. This strengthens the field of cloning as it had been tarnished by induced pluripotent stem cells (iPS) and other methods of reprogramming. However, for biological conservation purposes, cloning is not generally accepted as an alternative for animal conservation, and there is an ongoing debate between reproductive scientists and conservation specialists. Although we believe that nuclear transfer technologies have an opportunity in conservation efforts for some species that are on the brink of extinction and that population status, geographical isolation, reproductive characteristics, and human pressure create a situation that is almost unsustainable. In this article we discuss the barriers in cloning mammoths and cloning controversies in conservation from a zoological perspective, citing the species that might benefit from nuclear transfer techniques in the arduous journey so as not to disappear forever from this, our world.</p>","PeriodicalId":49217,"journal":{"name":"Cloning Stem Cells","volume":"11 3","pages":"341-6"},"PeriodicalIF":0.0,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/clo.2009.0026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28299621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}