首页 > 最新文献

World Wide Web-Internet and Web Information Systems最新文献

英文 中文
A semantic and service-based approach for adaptive mutli-structured data curation in data lakehouses 基于语义和服务的自适应多结构数据管理方法
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-11-06 DOI: 10.1007/s11280-023-01218-3
Firas Zouari, Chirine Ghedira-Guegan, Khouloud Boukadi, Nadia Kabachi
{"title":"A semantic and service-based approach for adaptive mutli-structured data curation in data lakehouses","authors":"Firas Zouari, Chirine Ghedira-Guegan, Khouloud Boukadi, Nadia Kabachi","doi":"10.1007/s11280-023-01218-3","DOIUrl":"https://doi.org/10.1007/s11280-023-01218-3","url":null,"abstract":"","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"2019 20","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135636720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KC-GEE: knowledge-based conditioning for generative event extraction KC-GEE:基于知识的条件作用生成事件提取
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-10-25 DOI: 10.1007/s11280-023-01216-5
Tongtong Wu, Fatemeh Shiri, Jingqi Kang, Guilin Qi, Gholamreza Haffari, Yuan-Fang Li
Abstract Event extraction is an important, but challenging task. Many existing techniques decompose it into event and argument detection/classification subtasks, which are complex structured prediction problems. Generation-based extraction techniques lessen the complexity of the problem formulation and are able to leverage the reasoning capabilities of large pretrained language models. However, they still suffer from poor zero-shot generalizability and are ineffective in handling long contexts such as documents. We propose a generative event extraction model, KC-GEE, that addresses these limitations. A key contribution of KC-GEE is a novel knowledge-based conditioning technique that injects the schema of candidate event types as the prefix into each layer of an encoder-decoder language model. This enables effective zero-shot learning and improves supervised learning. Our experiments on two benchmark datasets demonstrate the strong performance of our KC-GEE model. It achieves particularly strong results in the challenging document-level extraction task and in the zero-shot learning setting, outperforming state-of-the-art models by up to 5.4 absolute F1 points.
摘要事件提取是一项重要但具有挑战性的任务。许多现有技术将其分解为事件和参数检测/分类子任务,这是复杂的结构化预测问题。基于生成的提取技术降低了问题表述的复杂性,并且能够利用大型预训练语言模型的推理能力。然而,它们仍然存在较差的零概率通用性,并且在处理文档等长上下文时效果不佳。我们提出了一个生成事件提取模型,KC-GEE,解决了这些限制。KC-GEE的一个关键贡献是一种新的基于知识的条件反射技术,它将候选事件类型的模式作为前缀注入到编码器-解码器语言模型的每一层。这使得有效的零射击学习和改进监督学习成为可能。我们在两个基准数据集上的实验证明了我们的KC-GEE模型的强大性能。它在具有挑战性的文档级提取任务和零射击学习设置中取得了特别强大的结果,比最先进的模型高出5.4个绝对F1点。
{"title":"KC-GEE: knowledge-based conditioning for generative event extraction","authors":"Tongtong Wu, Fatemeh Shiri, Jingqi Kang, Guilin Qi, Gholamreza Haffari, Yuan-Fang Li","doi":"10.1007/s11280-023-01216-5","DOIUrl":"https://doi.org/10.1007/s11280-023-01216-5","url":null,"abstract":"Abstract Event extraction is an important, but challenging task. Many existing techniques decompose it into event and argument detection/classification subtasks, which are complex structured prediction problems. Generation-based extraction techniques lessen the complexity of the problem formulation and are able to leverage the reasoning capabilities of large pretrained language models. However, they still suffer from poor zero-shot generalizability and are ineffective in handling long contexts such as documents. We propose a generative event extraction model, KC-GEE, that addresses these limitations. A key contribution of KC-GEE is a novel knowledge-based conditioning technique that injects the schema of candidate event types as the prefix into each layer of an encoder-decoder language model. This enables effective zero-shot learning and improves supervised learning. Our experiments on two benchmark datasets demonstrate the strong performance of our KC-GEE model. It achieves particularly strong results in the challenging document-level extraction task and in the zero-shot learning setting, outperforming state-of-the-art models by up to 5.4 absolute F1 points.","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135217078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CoSP: co-selection pick for a global explainability of black box machine learning models CoSP:黑盒机器学习模型的全局可解释性的共同选择选择
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-10-18 DOI: 10.1007/s11280-023-01213-8
Dou El Kefel Mansouri, Seif-Eddine Benkabou, Khaoula Meddahi, Allel Hadjali, Amin Mesmoudi, Khalid Benabdeslem, Souleyman Chaib
{"title":"CoSP: co-selection pick for a global explainability of black box machine learning models","authors":"Dou El Kefel Mansouri, Seif-Eddine Benkabou, Khaoula Meddahi, Allel Hadjali, Amin Mesmoudi, Khalid Benabdeslem, Souleyman Chaib","doi":"10.1007/s11280-023-01213-8","DOIUrl":"https://doi.org/10.1007/s11280-023-01213-8","url":null,"abstract":"","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph neural network for recommendation in complex and quaternion spaces 复和四元数空间中的推荐图神经网络
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-10-10 DOI: 10.1007/s11280-023-01210-x
Longcan Wu, Daling Wang, Shi Feng, Xiangmin Zhou, Yifei Zhang, Ge Yu
{"title":"Graph neural network for recommendation in complex and quaternion spaces","authors":"Longcan Wu, Daling Wang, Shi Feng, Xiangmin Zhou, Yifei Zhang, Ge Yu","doi":"10.1007/s11280-023-01210-x","DOIUrl":"https://doi.org/10.1007/s11280-023-01210-x","url":null,"abstract":"","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136294659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Securing recommender system via cooperative training 通过合作培训确保推荐系统的安全
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-10-04 DOI: 10.1007/s11280-023-01214-7
Qingyang Wang, Chenwang Wu, Defu Lian, Enhong Chen
{"title":"Securing recommender system via cooperative training","authors":"Qingyang Wang, Chenwang Wu, Defu Lian, Enhong Chen","doi":"10.1007/s11280-023-01214-7","DOIUrl":"https://doi.org/10.1007/s11280-023-01214-7","url":null,"abstract":"","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135592119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-cost crossed probing path planning for network failure localization 网络故障定位的低成本交叉探测路径规划
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-10-03 DOI: 10.1007/s11280-023-01206-7
Hongyun Gao, Laiping Zhao, Sheng Chen, Keqiu Li
{"title":"Low-cost crossed probing path planning for network failure localization","authors":"Hongyun Gao, Laiping Zhao, Sheng Chen, Keqiu Li","doi":"10.1007/s11280-023-01206-7","DOIUrl":"https://doi.org/10.1007/s11280-023-01206-7","url":null,"abstract":"","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A semi-supervised framework for concept-based hierarchical document clustering 基于概念的分层文档聚类的半监督框架
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-10-02 DOI: 10.1007/s11280-023-01209-4
Seyed Mojtaba Sadjadi, Hoda Mashayekhi, Hamid Hassanpour
{"title":"A semi-supervised framework for concept-based hierarchical document clustering","authors":"Seyed Mojtaba Sadjadi, Hoda Mashayekhi, Hamid Hassanpour","doi":"10.1007/s11280-023-01209-4","DOIUrl":"https://doi.org/10.1007/s11280-023-01209-4","url":null,"abstract":"","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135791116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An effective method for the protection of user health topic privacy for health information services 健康信息服务用户健康主题隐私保护的有效方法
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-09-26 DOI: 10.1007/s11280-023-01208-5
Zongda Wu, Huawen Liu, Jian Xie, Guandong Xu, Gang Li, Chenglang Lu
{"title":"An effective method for the protection of user health topic privacy for health information services","authors":"Zongda Wu, Huawen Liu, Jian Xie, Guandong Xu, Gang Li, Chenglang Lu","doi":"10.1007/s11280-023-01208-5","DOIUrl":"https://doi.org/10.1007/s11280-023-01208-5","url":null,"abstract":"","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovering time series motifs of all lengths using dynamic time warping 使用动态时间翘曲发现所有长度的时间序列主题
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-09-20 DOI: 10.1007/s11280-023-01207-6
Zemin Chao, Hong Gao, Dongjing Miao, Hongzhi Wang
{"title":"Discovering time series motifs of all lengths using dynamic time warping","authors":"Zemin Chao, Hong Gao, Dongjing Miao, Hongzhi Wang","doi":"10.1007/s11280-023-01207-6","DOIUrl":"https://doi.org/10.1007/s11280-023-01207-6","url":null,"abstract":"","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136309340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FPGN: follower prediction framework for infectious disease prevention FPGN:传染病预防跟随者预测框架
3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2023-09-16 DOI: 10.1007/s11280-023-01205-8
Jianke Yu, Xianhang Zhang, Hanchen Wang, Xiaoyang Wang, Wenjie Zhang, Ying Zhang
Abstract In recent years, how to prevent the widespread transmission of infectious diseases in communities has been a research hot spot. Tracing close contact with infected individuals is one of the most severe problems. In this work, we present a model called Follower Prediction Graph Network (FPGN) to identify high-risk visitors, which is known as follower prediction. The model is designed to identify visitors who may be infected with a disease by tracking their activities at the exact location of infected visitors. FPGN is inspired by the state-of-the-art temporal graph edge prediction algorithm TGN and draws on the shortcomings of existing algorithms. It utilizes graph structure information based on ( $$alpha $$ α , $$beta $$ β )-core, time interval statistics by using the statistics of timestamp information, and a GAT-based prediction module to achieve high accuracy in follower prediction. Extensive experiments are conducted on two real datasets, demonstrating the progress of FPGN. The experimental results show that FPGN can achieve the highest results compared with other SOTA baselines. Its AP scores are higher than 0.46, and its AUC scores are higher than 0.62.
摘要近年来,如何预防传染病在社区的广泛传播一直是一个研究热点。追踪与感染者的密切接触是最严重的问题之一。在这项工作中,我们提出了一种称为追随者预测图网络(FPGN)的模型来识别高风险访客,称为追随者预测。该模型旨在通过跟踪受感染游客的确切位置来识别可能感染疾病的游客。FPGN的灵感来自于最先进的时序图边缘预测算法TGN,并吸取了现有算法的不足。利用基于($$alpha $$ α, $$beta $$ β)核的图结构信息,利用时间戳信息统计的时间间隔统计,以及基于gat的预测模块,实现了高精度的追随者预测。在两个真实数据集上进行了大量的实验,证明了FPGN的进展。实验结果表明,与其他SOTA基线相比,FPGN可以获得最高的结果。AP评分高于0.46,AUC评分高于0.62。
{"title":"FPGN: follower prediction framework for infectious disease prevention","authors":"Jianke Yu, Xianhang Zhang, Hanchen Wang, Xiaoyang Wang, Wenjie Zhang, Ying Zhang","doi":"10.1007/s11280-023-01205-8","DOIUrl":"https://doi.org/10.1007/s11280-023-01205-8","url":null,"abstract":"Abstract In recent years, how to prevent the widespread transmission of infectious diseases in communities has been a research hot spot. Tracing close contact with infected individuals is one of the most severe problems. In this work, we present a model called Follower Prediction Graph Network (FPGN) to identify high-risk visitors, which is known as follower prediction. The model is designed to identify visitors who may be infected with a disease by tracking their activities at the exact location of infected visitors. FPGN is inspired by the state-of-the-art temporal graph edge prediction algorithm TGN and draws on the shortcomings of existing algorithms. It utilizes graph structure information based on ( $$alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> , $$beta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>β</mml:mi> </mml:math> )-core, time interval statistics by using the statistics of timestamp information, and a GAT-based prediction module to achieve high accuracy in follower prediction. Extensive experiments are conducted on two real datasets, demonstrating the progress of FPGN. The experimental results show that FPGN can achieve the highest results compared with other SOTA baselines. Its AP scores are higher than 0.46, and its AUC scores are higher than 0.62.","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135308649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
World Wide Web-Internet and Web Information Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1