首页 > 最新文献

Theoretical Computer Science最新文献

英文 中文
Anonymous adversarial dynamic networks with logarithmic memory and communication 具有对数记忆和通信的匿名对抗动态网络
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-02 DOI: 10.1016/j.tcs.2025.115740
Dariusz R. Kowalski , Miguel A. Mosteiro
In seminal work on Adversarial Dynamic Networks, Kuhn, Lynch and Oshman (STOC 2010) [19] studied dynamic networks in which links are selected by an adversary and the number of network nodes is initially unknown. In such networks, they showed upper and lower bounds for computing the size of the network and any computable function of the nodes initial inputs. In this work, we address the same question in dynamic networks which additionally are: anonymous, possibly disconnected, and where internal memory and links’ bandwith are logarithmically limited. In the above framework, we study a fundamental communication principle – the All-to-all problem: each node has an input message to be delivered to all other nodes. (Once a node receives all inputs, any function can be computed locally.) Because of anonymity, each node needs to receive only a set of all input messages, each accompanied by a number of their initiating nodes (message multiplicity). We prove that this can be done deterministically in time proportional to the total number of messages’ bits multiplied by a small polynomial in networks’ parameters – namely, in the (initially unknown) number of nodes n and in the lower bound on the isoperimetric numbers of dynamically evolving graphs imin. Our results prove that a polynomial bit-throughput is possible in adversarial and anonymous dynamic networks with logarithmically limited bandwidth and internal memory.
在对抗性动态网络的开创性工作中,Kuhn, Lynch和Oshman (STOC 2010)研究了动态网络,其中链路由对手选择,网络节点的数量最初是未知的。在这样的网络中,他们展示了计算网络大小和节点初始输入的任何可计算函数的上界和下界。在这项工作中,我们在动态网络中解决了同样的问题,这些网络另外是:匿名的,可能断开连接的,并且内部存储器和链路的带宽是对数限制的。在上述框架中,我们研究了一个基本的通信原则——全对全问题:每个节点都有一个输入消息要传递给所有其他节点。(一旦节点接收到所有输入,任何函数都可以在本地计算。)由于匿名性,每个节点只需要接收所有输入消息的一组,每个输入消息都伴随着许多初始节点(消息多重性)。我们证明,这可以在与消息的总比特数乘以网络参数中的一个小多项式的时间成正比的情况下确定性地完成-即(最初未知的)节点数n和动态进化图的等周数imin的下界。我们的结果证明,在对数限制带宽和内存的对抗和匿名动态网络中,多项式比特吞吐量是可能的。
{"title":"Anonymous adversarial dynamic networks with logarithmic memory and communication","authors":"Dariusz R. Kowalski ,&nbsp;Miguel A. Mosteiro","doi":"10.1016/j.tcs.2025.115740","DOIUrl":"10.1016/j.tcs.2025.115740","url":null,"abstract":"<div><div>In seminal work on Adversarial Dynamic Networks, Kuhn, Lynch and Oshman (STOC 2010) [19] studied dynamic networks in which links are selected by an adversary and the number of network nodes is initially unknown. In such networks, they showed upper and lower bounds for computing the size of the network and any computable function of the nodes initial inputs. In this work, we address the same question in dynamic networks which additionally are: anonymous, possibly disconnected, and where internal memory and links’ bandwith are logarithmically limited. In the above framework, we study a fundamental communication principle – the All-to-all problem: each node has an input message to be delivered to all other nodes. (Once a node receives all inputs, any function can be computed locally.) Because of anonymity, each node needs to receive only a set of all input messages, each accompanied by a number of their initiating nodes (message multiplicity). We prove that this can be done deterministically in time proportional to the total number of messages’ bits multiplied by a small polynomial in networks’ parameters – namely, in the (initially unknown) number of nodes <em>n</em> and in the lower bound on the isoperimetric numbers of dynamically evolving graphs <em>i</em><sub>min</sub>. Our results prove that a polynomial bit-throughput is possible in adversarial and anonymous dynamic networks with logarithmically limited bandwidth and internal memory.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1066 ","pages":"Article 115740"},"PeriodicalIF":1.0,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some 2-binomial coefficients of binary words: geometrical interpretation, partitions of integers, and fair words 二元词的2-二项式系数:几何解释、整数分割和公平词
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2026-01-01 DOI: 10.1016/j.tcs.2025.115732
Gwenaël Richomme
The binomial notation (wu) represents the number of occurrences of the word u as a (scattered) subword in w. We first introduce and study possible uses of a geometrical interpretation of (wab) and (wba) when a and b are distinct letters. We then study the structure of the 2-binomial equivalence class of a binary word w (two words are 2-binomially equivalent if they have the same binomial coefficients, that is, the same numbers of occurrences, for each word of length at most 2). Especially we prove the existence of an isomorphism between the graph of the 2-binomial equivalence class of w with respect to a particular rewriting rule and the lattice of partitions of the integer (wab) with (wa) parts and greatest part bounded by (wb). Finally we study binary fair words, the words over {a, b} having the same numbers of occurrences of ab and ba as subwords ((wab)=(wba)). In particular, we prove a recent conjecture related to a special case of the least square approximation.
二项表示法(wu)表示单词u作为w中的一个(分散的)子词出现的次数。我们首先介绍并研究当a和b是不同的字母时(wab)和(wba)的几何解释的可能用途。然后,我们研究了二进制词w的2-二项式等价类的结构(如果两个词具有相同的二项式系数,即每个长度最多为2的词的出现次数相同,则两个词是2-二项式等价的)。特别证明了w关于特定改写规则的2-二项式等价类的图与有(wa)个部分和最大部以(wb)为界的整数(wab)的分区格之间存在同构。最后,我们研究二元公平词,在{a, b}上的词与子词((wab)=(wba))具有相同的ab和ba的出现次数。特别地,我们证明了最近关于最小二乘近似的一个特殊情况的一个猜想。
{"title":"On some 2-binomial coefficients of binary words: geometrical interpretation, partitions of integers, and fair words","authors":"Gwenaël Richomme","doi":"10.1016/j.tcs.2025.115732","DOIUrl":"10.1016/j.tcs.2025.115732","url":null,"abstract":"<div><div>The binomial notation <span><math><mrow><mo>(</mo><mfrac><mi>w</mi><mi>u</mi></mfrac><mo>)</mo></mrow></math></span> represents the number of occurrences of the word <em>u</em> as a (scattered) subword in <em>w</em>. We first introduce and study possible uses of a geometrical interpretation of <span><math><mrow><mo>(</mo><mfrac><mi>w</mi><mrow><mi>a</mi><mi>b</mi></mrow></mfrac><mo>)</mo></mrow></math></span> and <span><math><mrow><mo>(</mo><mfrac><mi>w</mi><mrow><mi>b</mi><mi>a</mi></mrow></mfrac><mo>)</mo></mrow></math></span> when <em>a</em> and <em>b</em> are distinct letters. We then study the structure of the 2-binomial equivalence class of a binary word <em>w</em> (two words are 2-binomially equivalent if they have the same binomial coefficients, that is, the same numbers of occurrences, for each word of length at most 2). Especially we prove the existence of an isomorphism between the graph of the 2-binomial equivalence class of <em>w</em> with respect to a particular rewriting rule and the lattice of partitions of the integer <span><math><mrow><mo>(</mo><mfrac><mi>w</mi><mrow><mi>a</mi><mi>b</mi></mrow></mfrac><mo>)</mo></mrow></math></span> with <span><math><mrow><mo>(</mo><mfrac><mi>w</mi><mi>a</mi></mfrac><mo>)</mo></mrow></math></span> parts and greatest part bounded by <span><math><mrow><mo>(</mo><mfrac><mi>w</mi><mi>b</mi></mfrac><mo>)</mo></mrow></math></span>. Finally we study binary fair words, the words over {<em>a, b</em>} having the same numbers of occurrences of <em>ab</em> and <em>ba</em> as subwords (<span><math><mrow><mrow><mo>(</mo><mfrac><mi>w</mi><mrow><mi>a</mi><mi>b</mi></mrow></mfrac><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mfrac><mi>w</mi><mrow><mi>b</mi><mi>a</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span>). In particular, we prove a recent conjecture related to a special case of the least square approximation.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1066 ","pages":"Article 115732"},"PeriodicalIF":1.0,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hackenforb the chameleon: A game capable of mimicking (practically) any misère game Hackenforb the chameleon:一款能够模仿(实际上)任何错误游戏的游戏
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-31 DOI: 10.1016/j.tcs.2025.115731
Bojan Bašić , Danijela Popović
We consider the game Hackenforb, which has been introduced recently and for which it has been shown that it is capable of mimicking a vast spectrum of impartial combinatorial games. We show that it is capable of mimicking any game that has the property that from every position there exists a move to an ending position; for misère play, this amounts to any game in which the players are entitled to resign the game on any move.
我们以最近推出的游戏《Hackenforb》为例,它已经被证明能够模仿大量公正的组合游戏。我们证明了它能够模仿任何具有从每个位置到结束位置存在移动的属性的游戏;对于mis玩法,这是指玩家有权在任何移动中退出游戏的任何游戏。
{"title":"Hackenforb the chameleon: A game capable of mimicking (practically) any misère game","authors":"Bojan Bašić ,&nbsp;Danijela Popović","doi":"10.1016/j.tcs.2025.115731","DOIUrl":"10.1016/j.tcs.2025.115731","url":null,"abstract":"<div><div>We consider the game Hackenforb, which has been introduced recently and for which it has been shown that it is capable of mimicking a vast spectrum of impartial combinatorial games. We show that it is capable of mimicking any game that has the property that from every position there exists a move to an ending position; for misère play, this amounts to any game in which the players are entitled to resign the game on any move.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1066 ","pages":"Article 115731"},"PeriodicalIF":1.0,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145980989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameterized complexity of fair many-to-one matchings 公平多对一匹配的参数化复杂度
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-31 DOI: 10.1016/j.tcs.2025.115727
Ramin Javadi, Hossein Shokouhi
Given a bipartite graph G=(UV,E), a left-perfect many-to-one matching is a subset ME such that each vertex in U is incident with exactly one edge in M. If U is partitioned into some groups, the matching is called fair if for every v ∈ V, the difference between the number of vertices matched with v in any two groups does not exceed a given threshold. In this paper, we investigate parameterized complexity of the fair left-perfect many-to-one matching problem with respect to the structural parameters of the input graph. In particular, we prove that the problem is W[1]-hard with respect to the feedback vertex number, tree-depth and the maximum degree of U, combined. Also, it is W[1]-hard with respect to the path-width, the number of groups and the maximum degree of U, combined. On the positive side, we prove that the problem is FPT with respect to the treewidth and the maximum degree of V. Also, it is FPT with respect to the neighborhood diversity of the input graph (which implies being FPT with respect to the vertex cover number and modular-width). Finally, we prove that the problem is FPT with respect to the tree-depth and the number of groups.
给定一个二部图G=(U∪V,E),一个左完全多对一匹配是一个子集M∈E,满足U中的每个顶点恰好与M中的一条边关联。如果将U划分为若干组,则对于每个V ∈ V,任意两组中与V匹配的顶点数之差不超过给定阈值,则称为公平匹配。本文研究了关于输入图结构参数的公平左完美多对一匹配问题的参数化复杂度。特别地,我们在反馈顶点数、树深度和U的最大度的组合方面证明了问题是W[1]-hard。对于路径宽度、组数和U的最大程度的组合,W[1]-hard。在积极的方面,我们证明了这个问题是关于树宽度和v的最大度的FPT,而且它是关于输入图的邻域多样性的FPT(这意味着是关于顶点覆盖数和模宽度的FPT)。最后,我们证明了该问题是关于树深度和组数的FPT问题。
{"title":"Parameterized complexity of fair many-to-one matchings","authors":"Ramin Javadi,&nbsp;Hossein Shokouhi","doi":"10.1016/j.tcs.2025.115727","DOIUrl":"10.1016/j.tcs.2025.115727","url":null,"abstract":"<div><div>Given a bipartite graph <span><math><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>U</mi><mo>∪</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></math></span>, a left-perfect many-to-one matching is a subset <em>M</em>⊆<em>E</em> such that each vertex in <em>U</em> is incident with exactly one edge in <em>M</em>. If <em>U</em> is partitioned into some groups, the matching is called fair if for every <em>v</em> ∈ <em>V</em>, the difference between the number of vertices matched with <em>v</em> in any two groups does not exceed a given threshold. In this paper, we investigate parameterized complexity of the fair left-perfect many-to-one matching problem with respect to the structural parameters of the input graph. In particular, we prove that the problem is W[1]-hard with respect to the feedback vertex number, tree-depth and the maximum degree of <em>U</em>, combined. Also, it is W[1]-hard with respect to the path-width, the number of groups and the maximum degree of <em>U</em>, combined. On the positive side, we prove that the problem is FPT with respect to the treewidth and the maximum degree of <em>V</em>. Also, it is FPT with respect to the neighborhood diversity of the input graph (which implies being FPT with respect to the vertex cover number and modular-width). Finally, we prove that the problem is FPT with respect to the tree-depth and the number of groups.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1066 ","pages":"Article 115727"},"PeriodicalIF":1.0,"publicationDate":"2025-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145908867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The parameterized complexity landscape of two-sets cut-uncut 两组切割-未切割的参数化复杂性景观
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-30 DOI: 10.1016/j.tcs.2025.115726
Matthias Bentert , Fedor V. Fomin , Fanny Hauser , Saket Saurabh
In Two-Sets Cut-Uncut, we are given an undirected graph G=(V,E) and two terminal sets S and T. The task is to find a minimum cut C in G (if there is any) separating S from T under the following “uncut” condition. In the graph (V, EC), the terminals in each terminal set remain in the same connected component. In spite of the superficial similarity to the classic problem Minimum s-t-Cut, Two-Sets Cut-Uncut is computationally challenging. In particular, even deciding whether such a cut of any size exists, is already NP-complete. We initiate a systematic study of Two-Sets Cut-Uncut within the context of parameterized complexity. By leveraging known relations between many well-studied graph parameters, we characterize the structural properties of input graphs that allow for polynomial kernels, fixed-parameter tractability (FPT), and slicewise polynomial algorithms (XP). Our main contribution is the near-complete establishment of the complexity of these algorithmic properties within the described hierarchy of graph parameters.
On a technical level, our main results are fixed-parameter tractability for the (vertex-deletion) distance to cographs and an OR-cross composition excluding polynomial kernels for the vertex cover number of the input graph (under the standard complexity assumption NP ¬ coNP/poly).
在两集切割-未切割中,我们给定一个无向图G=(V,E)和两个终端集S和T。任务是在以下“未切割”条件下,在G中找到一个最小切割C(如果存在),将S与T分开。在图(V, E∈C)中,每个终端集中的终端保持在同一个连通分量中。尽管表面上与经典的最小s-t切问题相似,但两集切-非切问题在计算上具有挑战性。特别是,即使决定是否存在任何规模的削减,也已经是np完备的。在参数化复杂性的背景下,对两集切-非切问题进行了系统的研究。通过利用许多经过充分研究的图参数之间的已知关系,我们描述了允许多项式核、固定参数可跟踪性(FPT)和分段多项式算法(XP)的输入图的结构属性。我们的主要贡献是在描述的图参数层次结构中几乎完全建立了这些算法属性的复杂性。在技术层面上,我们的主要成果是到图的(顶点删除)距离的固定参数可追溯性和输入图的顶点覆盖数的不含多项式核的or交叉组合(在标准复杂性假设NP¬coNP/poly下)。
{"title":"The parameterized complexity landscape of two-sets cut-uncut","authors":"Matthias Bentert ,&nbsp;Fedor V. Fomin ,&nbsp;Fanny Hauser ,&nbsp;Saket Saurabh","doi":"10.1016/j.tcs.2025.115726","DOIUrl":"10.1016/j.tcs.2025.115726","url":null,"abstract":"<div><div>In <span>Two-Sets Cut-Uncut</span>, we are given an undirected graph <span><math><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></math></span> and two terminal sets <em>S</em> and <em>T</em>. The task is to find a minimum cut <em>C</em> in <em>G</em> (if there is any) separating <em>S</em> from <em>T</em> under the following “uncut” condition. In the graph (<em>V, E</em>∖<em>C</em>), the terminals in each terminal set remain in the same connected component. In spite of the superficial similarity to the classic problem <span>Minimum s-t-Cut</span>, <span>Two-Sets Cut-Uncut</span> is computationally challenging. In particular, even deciding whether such a cut of <em>any size</em> exists, is already NP-complete. We initiate a systematic study of <span>Two-Sets Cut-Uncut</span> within the context of parameterized complexity. By leveraging known relations between many well-studied graph parameters, we characterize the structural properties of input graphs that allow for polynomial kernels, fixed-parameter tractability (FPT), and slicewise polynomial algorithms (XP). Our main contribution is the near-complete establishment of the complexity of these algorithmic properties within the described hierarchy of graph parameters.</div><div>On a technical level, our main results are fixed-parameter tractability for the (vertex-deletion) distance to cographs and an OR-cross composition excluding polynomial kernels for the vertex cover number of the input graph (under the standard complexity assumption NP <span><math><mrow><mo>¬</mo><mo>⊆</mo></mrow></math></span> coNP/poly).</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1065 ","pages":"Article 115726"},"PeriodicalIF":1.0,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145927310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximation algorithm for fair stochastic maximum coverage problem 公平随机最大覆盖问题的近似算法
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-29 DOI: 10.1016/j.tcs.2025.115722
Mingchao Zhou, Zhao Zhang
<div><div>We propose the <em>fair stochastic maximum coverage</em> (FSMC) problem. Given an element set <em>U</em> and a collection of sets <span><math><mi>S</mi></math></span> partitioned into ℓ disjoint groups <span><math><mrow><msub><mi>S</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>S</mi><mi>ℓ</mi></msub></mrow></math></span>, each set <em>S</em> has a cost <em>c<sub>S</sub></em>. For a set of demand scenarios Ω, each occurring with probability <em>p<sub>ω</sub></em>, let <em>r</em><sub><em>e,ω</em></sub> ∈ {0, 1} indicate whether element <em>e</em> is demanded in scenario <em>ω</em>. The objective is to choose a subcollection <span><math><mrow><mi>F</mi><mo>⊆</mo><mi>S</mi></mrow></math></span> maximizing the expected number of demanded elements covered, subject to a global budget <span><math><mrow><msub><mo>∑</mo><mrow><mi>S</mi><mo>∈</mo><mi>F</mi></mrow></msub><msub><mi>c</mi><mi>S</mi></msub><mo>≤</mo><mi>B</mi></mrow></math></span> and fairness constraints <span><math><mrow><msub><mi>L</mi><mi>i</mi></msub><mo>≤</mo><msub><mo>∑</mo><mrow><mi>S</mi><mo>∈</mo><mi>F</mi><mo>∩</mo><msub><mi>S</mi><mi>i</mi></msub></mrow></msub><msub><mi>c</mi><mi>S</mi></msub><mo>≤</mo><msub><mi>B</mi><mi>i</mi></msub></mrow></math></span> for each group. FSMC strictly generalizes the maximum group set cover (MGSC) problem by incorporating both stochasticity and lower-bound fairness constraints. Under two mild assumptions, we design a deterministic <span><math><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mi>f</mi></mfrac><mo>)</mo></mrow><mi>f</mi></msup><mo>)</mo></mrow></mrow></math></span>-approximation algorithm running in <span><math><mrow><mi>O</mi><mo>(</mo><mi>T</mi><mo>+</mo><mi>n</mi><mo>)</mo></mrow></math></span> time, where <em>f</em> is the maximum frequency of any element, <em>T</em> is the LP-solving time, and <span><math><mrow><mi>n</mi><mo>=</mo><mo>|</mo><mi>S</mi><mo>|</mo></mrow></math></span>. Relaxing one assumption yields a bi-criteria algorithm with the same ratio and total budget at most 2<em>B</em>. For the cardinality version (FCSMC), our algorithm achieves an unconditional <span><math><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mi>f</mi></mfrac><mo>)</mo></mrow><mi>f</mi></msup><mo>)</mo></mrow></math></span>-approximation. When <em>L<sub>i</sub></em> ≡ 0, FSMC reduces to the stochastic MGSC problem, where we obtain approximation ratio <span><math><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mn>1</mn><mi>f</mi></mfrac><mo>)</mo></mrow><mi>f</mi></msup><mo>)</mo></mrow><mo>></mo><mn>0.316</mn></mrow></math></span> under the relaxed assumption, and <span><math><mrow><mfrac><mn>1</mn><mn>3</mn></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mn>1<
提出了公平随机最大覆盖(FSMC)问题。给定一个元素集U和一个集S的集合S分成了若干个不相交的群S1,⋯S,S,每个集S都有一个代价cS。对于一组需求场景Ω,每个场景发生的概率为pω,设re, Ω ∈ {0,1}表示场景Ω中是否需要元素e。目标是在每个组的全局预算∑S∈FcS≤B和公平性约束Li≤∑S∈F∩sic≤Bi的条件下,选择一个满足期望覆盖元素数量最大化的子集合F≤S。FSMC结合了随机约束和下界公平性约束,严格推广了最大群集覆盖问题。在两个温和的假设下,我们设计了一个在O(T+n)时间内运行的确定性12(1−(1−1f)f)-近似算法,其中f为任意元素的最大频率,T为lp求解时间,n=|S|。放宽一个假设会产生一个双标准算法,具有相同的比率和最多2B的总预算。对于基数版本(FCSMC),我们的算法实现了无条件的(1−(1−1f)f)-近似。当Li ≡ 0时,FSMC简化为随机MGSC问题,我们在松弛假设下得到近似比12(1−(1−1f)f)>0.316,在没有假设的情况下得到近似比13(1−(1−1f)f)>0.2107,改进了之前最著名的多项式时间近似比0.2。
{"title":"Approximation algorithm for fair stochastic maximum coverage problem","authors":"Mingchao Zhou,&nbsp;Zhao Zhang","doi":"10.1016/j.tcs.2025.115722","DOIUrl":"10.1016/j.tcs.2025.115722","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We propose the &lt;em&gt;fair stochastic maximum coverage&lt;/em&gt; (FSMC) problem. Given an element set &lt;em&gt;U&lt;/em&gt; and a collection of sets &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; partitioned into ℓ disjoint groups &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;⋯&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;ℓ&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, each set &lt;em&gt;S&lt;/em&gt; has a cost &lt;em&gt;c&lt;sub&gt;S&lt;/sub&gt;&lt;/em&gt;. For a set of demand scenarios Ω, each occurring with probability &lt;em&gt;p&lt;sub&gt;ω&lt;/sub&gt;&lt;/em&gt;, let &lt;em&gt;r&lt;/em&gt;&lt;sub&gt;&lt;em&gt;e,ω&lt;/em&gt;&lt;/sub&gt; ∈ {0, 1} indicate whether element &lt;em&gt;e&lt;/em&gt; is demanded in scenario &lt;em&gt;ω&lt;/em&gt;. The objective is to choose a subcollection &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; maximizing the expected number of demanded elements covered, subject to a global budget &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and fairness constraints &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for each group. FSMC strictly generalizes the maximum group set cover (MGSC) problem by incorporating both stochasticity and lower-bound fairness constraints. Under two mild assumptions, we design a deterministic &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-approximation algorithm running in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; time, where &lt;em&gt;f&lt;/em&gt; is the maximum frequency of any element, &lt;em&gt;T&lt;/em&gt; is the LP-solving time, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Relaxing one assumption yields a bi-criteria algorithm with the same ratio and total budget at most 2&lt;em&gt;B&lt;/em&gt;. For the cardinality version (FCSMC), our algorithm achieves an unconditional &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;-approximation. When &lt;em&gt;L&lt;sub&gt;i&lt;/sub&gt;&lt;/em&gt; ≡ 0, FSMC reduces to the stochastic MGSC problem, where we obtain approximation ratio &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/mfrac&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0.316&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; under the relaxed assumption, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mfrac&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1065 ","pages":"Article 115722"},"PeriodicalIF":1.0,"publicationDate":"2025-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145927412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Border tracing in oriented adjacency graphs of polygonal tilings 多边形平铺的有向邻接图的边界跟踪
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-27 DOI: 10.1016/j.tcs.2025.115729
Petra Wiederhold , Tonatiuh Matos-Wiederhold
The paper presents a border tracing algorithm for sets of polygonal tiles which are identified with the nodes of an oriented adjacency graph. This algorithm is the first one proposed for objects in an arbitrary edge-to-edge tiling of convex polygons equipped with an adjacency relation, although it adapts a known method to determine so-called border meshes of subgraphs of oriented graphs. We employ several adjacencies to study the corresponding border meshes and contours resulting from the algorithm, and compare them to another type of boundary. Special attention is given to border tracing for connected objects in rectangular, triangular or hexagonal tilings, using diverse adjacency based connectivity types. The latter could be useful, for example, to analyse digital images made of square, rectangular, triangular or hexagonal pixels.
本文提出了一种用有向邻接图的节点来识别多边形块集的边界跟踪算法。该算法是第一个针对具有邻接关系的凸多边形任意边缘到边缘平铺中的对象提出的算法,尽管它采用了一种已知的方法来确定有向图的子图的所谓边界网格。我们使用几个邻接关系来研究由算法产生的相应边界网格和轮廓,并将它们与另一种类型的边界进行比较。特别注意的是在矩形,三角形或六边形瓷砖连接对象的边界跟踪,使用不同的邻接性为基础的连接类型。后者可能是有用的,例如,分析由正方形、矩形、三角形或六边形像素组成的数字图像。
{"title":"Border tracing in oriented adjacency graphs of polygonal tilings","authors":"Petra Wiederhold ,&nbsp;Tonatiuh Matos-Wiederhold","doi":"10.1016/j.tcs.2025.115729","DOIUrl":"10.1016/j.tcs.2025.115729","url":null,"abstract":"<div><div>The paper presents a border tracing algorithm for sets of polygonal tiles which are identified with the nodes of an oriented adjacency graph. This algorithm is the first one proposed for objects in an arbitrary edge-to-edge tiling of convex polygons equipped with an adjacency relation, although it adapts a known method to determine so-called border meshes of subgraphs of oriented graphs. We employ several adjacencies to study the corresponding border meshes and contours resulting from the algorithm, and compare them to another type of boundary. Special attention is given to border tracing for connected objects in rectangular, triangular or hexagonal tilings, using diverse adjacency based connectivity types. The latter could be useful, for example, to analyse digital images made of square, rectangular, triangular or hexagonal pixels.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1065 ","pages":"Article 115729"},"PeriodicalIF":1.0,"publicationDate":"2025-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145927309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extra path-structure connectivity of modified bubble-sort networks 改进气泡排序网络的额外路径结构连通性
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-26 DOI: 10.1016/j.tcs.2025.115728
Guozhen Zhang , Tao Wen , Dajin Wang
<div><div>A network’s connectivity is a crucial indicator for its reliability. There are various ways to measure the connectivity, and the <em>extra connectivity</em> and the <em>structure connectivity</em> are two variants of the classic, original connectivity. In this paper, we incorporate the two to study the <em><strong>extra structure connectivity</strong></em> for the <em>modified bubble-sort network MB<sub>n</sub></em>, which is one of the proposed models for the interconnection network of multiprocessor systems. Let <em>H</em> be a connected subgraph of a graph <em>G</em>, and let <span><math><mrow><mi>F</mi><mo>=</mo><mo>{</mo><msub><mi>H</mi><mn>1</mn></msub><mo>,</mo><msub><mi>H</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>H</mi><mi>j</mi></msub><mo>}</mo></mrow></math></span> be a set of subgraphs of <em>G</em>, such that 1) each <em>H<sub>i</sub></em> is isomorphic to <em>H</em>; 2) <span><math><mrow><mi>G</mi><mo>−</mo><mi>F</mi></mrow></math></span> is disconnected; and 3) each component of <span><math><mrow><mi>G</mi><mo>−</mo><mi>F</mi></mrow></math></span> has at least <span><math><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow></math></span> nodes. The minimum <em>j</em> for such an <em>F</em> is called the <em>g</em>-extra <em>H</em>-structure connectivity of <em>G</em>, denoted <em>κ<sub>g</sub></em>(<em>G</em>; <em>H</em>). Let <span><math><mrow><mi>F</mi><mo>=</mo><mo>{</mo><msub><mi>J</mi><mn>1</mn></msub><mo>,</mo><msub><mi>J</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>J</mi><mi>k</mi></msub><mo>}</mo></mrow></math></span> be a set of subgraphs of <em>G</em>, such that 1) each <em>J<sub>i</sub></em> is isomorphic to a subgraph of <em>H</em>; 2) <span><math><mrow><mi>G</mi><mo>−</mo><mi>F</mi></mrow></math></span> is disconnected; and 3) each component of <span><math><mrow><mi>G</mi><mo>−</mo><mi>F</mi></mrow></math></span> has at least <span><math><mrow><mi>g</mi><mo>+</mo><mn>1</mn></mrow></math></span> nodes. The minimum <em>k</em> for such an <em>F</em> is called the <em>g</em>-extra <em>H</em>-substructure connectivity of <em>G</em>, denoted <span><math><mrow><msubsup><mi>κ</mi><mrow><mi>g</mi></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>;</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. We will prove that for <em>P</em><sub>3<em>l</em></sub>, a path on 3<em>l</em> nodes, <span><math><mstyle><mrow><msub><mi>κ</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>M</mi><mspace></mspace><msub><mi>B</mi><mi>n</mi></msub><mo>;</mo><msub><mi>P</mi><mrow><mn>3</mn><mi>l</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msubsup><mi>κ</mi><mrow><mn>1</mn></mrow><mi>s</mi></msubsup><mrow><mo>(</mo><mi>M</mi><mspace></mspace><msub><mi>B</mi><mi>n</mi></msub><mo>;</mo><msub><mi>P</mi><mrow><mn>3</mn><mi>l</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mi>l</mi></mfrac><mo>⌉</mo></mrow></mrow></mstyle></math></span> for <em>n</em> ≥ 9 and
网络的连通性是其可靠性的关键指标。测量连通性的方法有很多种,额外连通性和结构连通性是经典的原始连通性的两种变体。本文将二者结合,研究了多处理机系统互连网络模型之一的改进气泡排序网络MBn的额外结构连通性。设H是图G的连通子图,设F={H1,H2,…,Hj}是G的一组子图,使得1)每个Hi与H同构;2) G−F断开;3) G−F的每个分量至少有G +1个节点。这种F的最小j称为G的G -extra H结构连通性,记为κg(G; H)。设F={J1,J2,…,Jk}是G的一组子图,使得1)每个Ji与H的一个子图同构;2) G−F断开;3) G−F的每个分量至少有G +1个节点。这种F的最小k称为G的G -extra H-子结构连通性,记为κgs(G;H)。我们将证明对于P3l,在3l个节点上的一条路径,当n ≥ 9且l≤n - 2时,κ1(MBn;P3l)=κ1s(MBn;P3l)=≤n - 1l;
{"title":"Extra path-structure connectivity of modified bubble-sort networks","authors":"Guozhen Zhang ,&nbsp;Tao Wen ,&nbsp;Dajin Wang","doi":"10.1016/j.tcs.2025.115728","DOIUrl":"10.1016/j.tcs.2025.115728","url":null,"abstract":"&lt;div&gt;&lt;div&gt;A network’s connectivity is a crucial indicator for its reliability. There are various ways to measure the connectivity, and the &lt;em&gt;extra connectivity&lt;/em&gt; and the &lt;em&gt;structure connectivity&lt;/em&gt; are two variants of the classic, original connectivity. In this paper, we incorporate the two to study the &lt;em&gt;&lt;strong&gt;extra structure connectivity&lt;/strong&gt;&lt;/em&gt; for the &lt;em&gt;modified bubble-sort network MB&lt;sub&gt;n&lt;/sub&gt;&lt;/em&gt;, which is one of the proposed models for the interconnection network of multiprocessor systems. Let &lt;em&gt;H&lt;/em&gt; be a connected subgraph of a graph &lt;em&gt;G&lt;/em&gt;, and let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a set of subgraphs of &lt;em&gt;G&lt;/em&gt;, such that 1) each &lt;em&gt;H&lt;sub&gt;i&lt;/sub&gt;&lt;/em&gt; is isomorphic to &lt;em&gt;H&lt;/em&gt;; 2) &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is disconnected; and 3) each component of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; has at least &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; nodes. The minimum &lt;em&gt;j&lt;/em&gt; for such an &lt;em&gt;F&lt;/em&gt; is called the &lt;em&gt;g&lt;/em&gt;-extra &lt;em&gt;H&lt;/em&gt;-structure connectivity of &lt;em&gt;G&lt;/em&gt;, denoted &lt;em&gt;κ&lt;sub&gt;g&lt;/sub&gt;&lt;/em&gt;(&lt;em&gt;G&lt;/em&gt;; &lt;em&gt;H&lt;/em&gt;). Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be a set of subgraphs of &lt;em&gt;G&lt;/em&gt;, such that 1) each &lt;em&gt;J&lt;sub&gt;i&lt;/sub&gt;&lt;/em&gt; is isomorphic to a subgraph of &lt;em&gt;H&lt;/em&gt;; 2) &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is disconnected; and 3) each component of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; has at least &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; nodes. The minimum &lt;em&gt;k&lt;/em&gt; for such an &lt;em&gt;F&lt;/em&gt; is called the &lt;em&gt;g&lt;/em&gt;-extra &lt;em&gt;H&lt;/em&gt;-substructure connectivity of &lt;em&gt;G&lt;/em&gt;, denoted &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We will prove that for &lt;em&gt;P&lt;/em&gt;&lt;sub&gt;3&lt;em&gt;l&lt;/em&gt;&lt;/sub&gt;, a path on 3&lt;em&gt;l&lt;/em&gt; nodes, &lt;span&gt;&lt;math&gt;&lt;mstyle&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/msubsup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mfrac&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;/math&gt;&lt;/span&gt; for &lt;em&gt;n&lt;/em&gt; ≥ 9 and","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1065 ","pages":"Article 115728"},"PeriodicalIF":1.0,"publicationDate":"2025-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145927308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Min-Sum disjoint paths on subclasses of chordal graphs 弦图子类上的最小和不相交路径
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-24 DOI: 10.1016/j.tcs.2025.115723
Bar Menashe, Meirav Zehavi
We study the optimization version of the classic Disjoint Paths problem, known as Min-Sum Disjoint Paths, as well as its restriction to shortest paths, known as Disjoint Shortest Paths. Both problems are notoriously hard in the sense that very few positive results are known in their context even when confined to grids, in contrast to the classic Disjoint Paths problem, despite significant research efforts in recent years. In light of this, we focus on restricted graph classes, being subclasses of chordal graphs: specifically, we consider the classes of split graphs, well-partitioned chordal graphs, and threshold graphs. For each of the two problems and each of these graph classes, we provide either a polynomial-time algorithm or a fixed-parameter algorithm (when a polynomial-time algorithm is unlikely to exist).
我们研究了经典不相交路径问题的优化版本,即最小和不相交路径问题,以及它对最短路径的限制,即不相交最短路径问题。这两个问题在某种意义上都是出了名的困难,与经典的不相交路径问题相比,即使局限于网格,在它们的背景下也很少有积极的结果,尽管近年来进行了大量的研究工作。鉴于此,我们将重点放在受限图类上,它们是弦图的子类:具体来说,我们考虑了分裂图、良好划分弦图和阈值图的类。对于这两个问题中的每一个和每一个图类,我们提供了一个多项式时间算法或一个固定参数算法(当多项式时间算法不太可能存在时)。
{"title":"Min-Sum disjoint paths on subclasses of chordal graphs","authors":"Bar Menashe,&nbsp;Meirav Zehavi","doi":"10.1016/j.tcs.2025.115723","DOIUrl":"10.1016/j.tcs.2025.115723","url":null,"abstract":"<div><div>We study the optimization version of the classic <span>Disjoint Paths</span> problem, known as <span>Min-Sum Disjoint Paths</span>, as well as its restriction to shortest paths, known as <span>Disjoint Shortest Paths</span>. Both problems are notoriously hard in the sense that very few positive results are known in their context even when confined to grids, in contrast to the classic <span>Disjoint Paths</span> problem, despite significant research efforts in recent years. In light of this, we focus on restricted graph classes, being subclasses of chordal graphs: specifically, we consider the classes of split graphs, well-partitioned chordal graphs, and threshold graphs. For each of the two problems and each of these graph classes, we provide either a polynomial-time algorithm or a fixed-parameter algorithm (when a polynomial-time algorithm is unlikely to exist).</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1064 ","pages":"Article 115723"},"PeriodicalIF":1.0,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145885130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Offensive alliances in signed graphs 在签名图中的进攻联盟
IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-12-24 DOI: 10.1016/j.tcs.2025.115724
Zhidan Feng , Henning Fernau , Kevin Mann , Xingqin Qi
Signed graphs have been introduced to enrich graph structures expressing relationships between persons or general social entities, introducing edge signs to reflect the nature of the relationship, e.g., friendship or enmity. Independently, offensive alliances have been defined and studied for undirected, unsigned graphs. We join both lines of research and define offensive alliances in signed graphs, hence considering the nature of relationships. Apart from some combinatorial results, mainly on k-balanced and k-anti-balanced signed graphs (where the latter is a newly introduced family of signed graphs), we focus on the algorithmic complexity of finding smallest offensive alliances, looking at a number of parameterizations. While the parameter solution size leads to an FPTresult for unsigned graphs, we obtain W[2]-completeness for the signed setting. We introduce new parameters for signed graphs, e.g., distance to weakly balanced signed graphs, that could be of independent interest. We show that these parameters yield FPTresults. Here, we make use of the recently introduced parameter neighborhood diversity for signed graphs.
符号图被引入来丰富表达人与人或一般社会实体之间关系的图结构,引入边缘符号来反映关系的性质,例如友谊或敌意。独立地,进攻联盟已经被定义和研究为无向,无符号图。我们将这两条研究线结合起来,并在签名图中定义进攻性联盟,从而考虑到关系的本质。除了一些组合结果,主要是关于k-平衡和k-反平衡的符号图(后者是新引入的符号图族),我们专注于寻找最小进攻联盟的算法复杂性,研究了许多参数化。虽然参数解的大小导致无符号图的fpresult,但对于有符号设置,我们获得了W[2]-完备性。我们为符号图引入了新的参数,例如,到弱平衡符号图的距离,这可能是独立的兴趣。我们展示了这些参数产生fpresults。在这里,我们利用最近引入的参数邻域多样性来求解有符号图。
{"title":"Offensive alliances in signed graphs","authors":"Zhidan Feng ,&nbsp;Henning Fernau ,&nbsp;Kevin Mann ,&nbsp;Xingqin Qi","doi":"10.1016/j.tcs.2025.115724","DOIUrl":"10.1016/j.tcs.2025.115724","url":null,"abstract":"<div><div>Signed graphs have been introduced to enrich graph structures expressing relationships between persons or general social entities, introducing edge signs to reflect the nature of the relationship, e.g., friendship or enmity. Independently, offensive alliances have been defined and studied for undirected, unsigned graphs. We join both lines of research and define offensive alliances in signed graphs, hence considering the nature of relationships. Apart from some combinatorial results, mainly on <em>k</em>-balanced and <em>k</em>-anti-balanced signed graphs (where the latter is a newly introduced family of signed graphs), we focus on the algorithmic complexity of finding smallest offensive alliances, looking at a number of parameterizations. While the parameter solution size leads to an <span>FPT</span>result for unsigned graphs, we obtain <span><math><mrow><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></mrow></math></span>-completeness for the signed setting. We introduce new parameters for signed graphs, e.g., distance to weakly balanced signed graphs, that could be of independent interest. We show that these parameters yield <span>FPT</span>results. Here, we make use of the recently introduced parameter neighborhood diversity for signed graphs.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1065 ","pages":"Article 115724"},"PeriodicalIF":1.0,"publicationDate":"2025-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145886131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Theoretical Computer Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1