Fetal neurology encompasses the full spectrum of neonatal and child neurology presentations, with complex additional layers of diagnostic and prognostic challenges unique to the specific prenatal consultation. Diverse genetic and acquired etiologies with a range of potential outcomes may be encountered. Three clinical case presentations are discussed that highlight how postnatal phenotyping and longitudinal follow-up are essential to address the uncertainties that arise in utero, after birth, and in childhood, as well as to provide continuity of care.
Interdisciplinary fetal-neonatal neurology (FNN) training considers a woman's reproductive and pregnancy health histories when assessing the “four great neonatal neurological syndromes”. This maternal-child dyad exemplifies the symptomatic neonatal minority, compared with the silent majority of healthy children who experience preclinical diseases with variable expressions over the first 1000 days. Healthy maternal reports with reassuring fetal surveillance testing preceded signs of fetal distress during parturition. An encephalopathic neonate with seizures later exhibited childhood autistic spectrum behaviors and intractable epilepsy correlated with identified genetic biomarkers. A systems biology approach to etiopathogenesis guides the diagnostic process to interpret phenotypic form and function. Evolving gene-environment interactions expressed by changing phenotypes reflect a dynamic neural exposome influenced by reproductive and pregnancy health. This strategy considers critical/sensitive periods of neuroplasticity beyond two years of life to encompass childhood and adolescence. Career-long FNN experiences reenforce earlier training to strengthen the cognitive process and minimize cognitive biases when assessing children or adults. Prioritizing social determinants of healthcare for persons with neurologic disorders will help mitigate the global burden of brain diseases for all women and children.
Advances in fetal brain neuroimaging, especially fetal neurosonography and brain magnetic resonance imaging (MRI), allow safe and accurate anatomical assessments of fetal brain structures that serve as a foundation for prenatal diagnosis and counseling regarding fetal brain anomalies. Fetal neurosonography strategically assesses fetal brain anomalies suspected by screening ultrasound. Fetal brain MRI has unique technological features that overcome the anatomical limits of smaller fetal brain size and the unpredictable variable of intrauterine motion artifact. Recent studies of fetal brain MRI provide evidence of improved diagnostic and prognostic accuracy, beginning with prenatal diagnosis. Despite technological advances over the last several decades, the combined use of different qualitative structural biomarkers has limitations in providing an accurate prognosis. Quantitative analyses of fetal brain MRIs offer measurable imaging biomarkers that will more accurately associate with clinical outcomes. First-trimester ultrasound opens new opportunities for risk assessment and fetal brain anomaly diagnosis at the earliest time in pregnancy. This review includes a case vignette to illustrate how fetal brain MRI results interpreted by the fetal neurologist can improve diagnostic perspectives. The strength and limitations of conventional ultrasound and fetal brain MRI will be compared with recent research advances in quantitative methods to better correlate fetal neuroimaging biomarkers of neuropathology to predict functional childhood deficits. Discussion of these fetal sonogram and brain MRI advances will highlight the need for further interdisciplinary collaboration using complementary skills to continue improving clinical decision-making following precision medicine principles.
As the field of fetal-neonatal neurology has expanded over the past 2 decades with increasingly complex diagnoses, multidisciplinary collaboration with many subspecialties including genetics, neonatology, obstetrics, maternal fetal medicine, surgical sub-specialties, cardiology, radiology, palliative care, and ethics has needed to evolve to strive to offer optimal patient care. While comprehensive care delivery with an inter-disciplinary approach is preferred, there are often barriers based on numerous health disparities especially in resource limited settings. Even in the context of comprehensive care, diagnostic and prognostic uncertainty lead to challenges for providers during fetal neurology consultations. We present a case that highlights advantages of a comprehensive multi-disciplinary team in caring for the medical and social challenges of patients faced with a fetal neurologic diagnosis. Inter-disciplinary training focusing on maternal, fetal, neonatal, and childhood neurodevelopmental course and collaboration among the numerous stakeholders that contribute to fetal neurology practice is needed to provide optimal counseling and care for families faced with a fetal neurological diagnosis.
Insight into neuroembryology, developmental neuroanatomy and neurophysiology distinguish the diagnostic approaches of paediatric from adult neurologists and general paediatricians. These fundamental disciplines of basic neuroscience could be more effectively taught during paediatric neurology and most residency programmes, that will strengthen career-long learning. Interdisciplinary training of fetal-neonatal neurology within these programs requires working knowledge of neuroembryology applied to maternal reproductive health influencing the maternal-placental-fetal triad, neonate, and young child. Systematic didactic teaching of development in terms of basic neuroscience with neuropathological context would better address needed clinical skill sets to be incorporated into paediatric neurology and neonatology residencies to address brain health and diseases across childhood. Trainees need to recognize the continuity of development, established by maternal reproductive health before conception with gene -environment influences over the first 1000 days. Considerations of neuroembryology that explain earlier brain development during the first half of pregnancy enhances an understanding of effects throughout gestation through parturition and into neonatal life. Neonatal EEG training enhances these clinical descriptions by applying serial EEG-state analyses of premature neonates through early childhood to recognize evolving patterns associated with neuronal maturation and synaptogenesis. Neuroimaging studies offer comparisons of normal structural images with malformations and destructive lesions to correlate with clinical and neurophysiological findings. This analysis better assesses aberrant developmental processes in the context of neuroembryology. Time-specific developmental events and semantic precision are important for accurate phenotypic descriptions for a better understanding of etiopathogenesis with maturation. Certification of paediatric neurology training programme curricula should apply practical knowledge of basic neuroscience in the context of nervous system development and maturation from conception through postnatal time periods. Interdisciplinary fetal-neonatal neurology training constitutes an important educational component for career-long learning.
Over 75% of surviving extremely preterm infants do not have major neurodevelopmental disabilities; however, more than half face difficulties with communication, coordination, attention, learning, social, and executive function abilities. These “minor” challenges can have a negative impact on educational and social outcomes, resulting in physical, behavioral, and social health problems in adulthood. We will review assessment tools for social-emotional and adaptive functional skills in early childhood as these determine family and early childhood supports. We highlight bronchopulmonary dysplasia as an example of the critical intersections of parental wellbeing, medical and developmental adaptive trajectories in infancy and early childhood, and partnerships between child neurologists and community medical and developmental professionals. We examine studies of engaging parents to promote developmental trajectories, with a focus on supporting parent-child interactions that underlie communication, social-adaptive behaviors, and learning in the first 1000 days of life. Recommendations for neurodevelopmental surveillance and screening of extremely preterm infants can also be applied to infants with other risk factors for altered neurodevelopment.

