首页 > 最新文献

BMC Chemical Engineering最新文献

英文 中文
BMC Chemical Engineering: an open access publishing venue for the chemical engineering community BMC Chemical Engineering:化学工程社区的开放获取出版场所
IF 2.35 Pub Date : 2019-01-30 DOI: 10.1186/s42480-019-0001-0
Harriet E. Manning, Robert Field, Rafiqul Gani, Adam Lee, Hyunjoo Lee, Jay H. Lee, Gongping Liu, Sang Yup Lee

This editorial accompanies the launch of BMC Chemical Engineering, a new addition to the BMC Series. The journal follows the BMC Series ethos of being fully open access and making editorial decisions based on scientific validity and quality rather than perceived interest or impact. The scope of the journal is broad, considering fundamental and applied research in all areas of chemical engineering with the ultimate aim of providing an inclusive, community-focussed venue to ensure that the most relevant chemical engineering research is disseminated widely for all to read and build upon.

这篇社论伴随着BMC化学工程的推出,这是BMC系列的新成员。该期刊遵循BMC系列的精神,即完全开放获取,根据科学有效性和质量而不是感知到的兴趣或影响做出编辑决定。该杂志的范围很广,考虑了化学工程所有领域的基础和应用研究,其最终目标是提供一个包容性的、以社区为中心的场所,以确保最相关的化学工程研究被广泛传播,供所有人阅读和建立。
{"title":"BMC Chemical Engineering: an open access publishing venue for the chemical engineering community","authors":"Harriet E. Manning,&nbsp;Robert Field,&nbsp;Rafiqul Gani,&nbsp;Adam Lee,&nbsp;Hyunjoo Lee,&nbsp;Jay H. Lee,&nbsp;Gongping Liu,&nbsp;Sang Yup Lee","doi":"10.1186/s42480-019-0001-0","DOIUrl":"https://doi.org/10.1186/s42480-019-0001-0","url":null,"abstract":"<p>This editorial accompanies the launch of <i>BMC Chemical Engineering</i>, a new addition to the BMC Series. The journal follows the BMC Series ethos of being fully open access and making editorial decisions based on scientific validity and quality rather than perceived interest or impact. The scope of the journal is broad, considering fundamental and applied research in all areas of chemical engineering with the ultimate aim of providing an inclusive, community-focussed venue to ensure that the most relevant chemical engineering research is disseminated widely for all to read and build upon.</p>","PeriodicalId":495,"journal":{"name":"BMC Chemical Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.35,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42480-019-0001-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5142012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Incorporation of Cu3BTC2 nanocrystals to increase the permeability of polymeric membranes in O2/N2 separation Cu3BTC2纳米晶的加入提高了聚合物膜在O2/N2分离中的渗透率
IF 2.35 Pub Date : 2019-01-30 DOI: 10.1186/s42480-019-0002-z
Chong Yang Chuah, Tae-Hyun Bae

To increase permeability in O2/N2 separation without compromising selectivity, Cu3BTC2 (or HKUST-1) nanocrystals, which possess well-defined channels and high surface area, were used as the filler for mixed-matrix membrane fabrication. The Cu3BTC2 nanocrystals, which were synthesized at room temperature with a facile method, showed desirable physical properties and porosity comparable to those of a commercial Cu3BTC2 adsorbent (Basolite C300). High-quality mixed-matrix membranes without appreciable defects were successfully fabricated with both Matrimid and polysulfone, which are commercial membrane polymers that suffer from poor permeability. Gas permeation testing revealed that 20?wt% Cu3BTC2 nanocrystals loading dramatically improved the O2 permeability of both polymer membranes (106% for Matrimid and 379% for polysulfone), with modest increases in O2/N2 selectivity. A detailed analysis of diffusivity and solubility showed that the overall O2/N2 diffusion selectivity was improved substantially over that of a neat polymeric membrane with the incorporation of Cu3BTC2 nanocrystals. A comparative study with literature data demonstrated that Cu3BTC2 nanocrystals are far more effective than other metal-organic framework fillers tested to increase permeability in O2/N2 separation.

为了在不影响选择性的情况下提高O2/N2分离的渗透性,Cu3BTC2(或HKUST-1)纳米晶体具有良好的沟道和高表面积,被用作混合基质膜的填料。用简单的方法在室温下合成了Cu3BTC2纳米晶体,其物理性能和孔隙率与商用Cu3BTC2吸附剂(Basolite C300)相当。利用渗透性差的商用膜聚合物基质和聚砜,成功制备了无明显缺陷的高质量混合基质膜。气体渗透测试显示20?wt% Cu3BTC2纳米晶负载显著提高了两种聚合物膜的O2渗透率(Matrimid为106%,聚砜为379%),O2/N2选择性略有增加。对扩散率和溶解度的详细分析表明,与纯聚合物膜相比,Cu3BTC2纳米晶体的整体O2/N2扩散选择性有了显著提高。与文献数据的对比研究表明,Cu3BTC2纳米晶体在提高O2/N2分离渗透率方面远比其他金属-有机骨架填料有效。
{"title":"Incorporation of Cu3BTC2 nanocrystals to increase the permeability of polymeric membranes in O2/N2 separation","authors":"Chong Yang Chuah,&nbsp;Tae-Hyun Bae","doi":"10.1186/s42480-019-0002-z","DOIUrl":"https://doi.org/10.1186/s42480-019-0002-z","url":null,"abstract":"<p>To increase permeability in O<sub>2</sub>/N<sub>2</sub> separation without compromising selectivity, Cu<sub>3</sub>BTC<sub>2</sub> (or HKUST-1) nanocrystals, which possess well-defined channels and high surface area, were used as the filler for mixed-matrix membrane fabrication. The Cu<sub>3</sub>BTC<sub>2</sub> nanocrystals, which were synthesized at room temperature with a facile method, showed desirable physical properties and porosity comparable to those of a commercial Cu<sub>3</sub>BTC<sub>2</sub> adsorbent (Basolite C300). High-quality mixed-matrix membranes without appreciable defects were successfully fabricated with both Matrimid and polysulfone, which are commercial membrane polymers that suffer from poor permeability. Gas permeation testing revealed that 20?wt% Cu<sub>3</sub>BTC<sub>2</sub> nanocrystals loading dramatically improved the O<sub>2</sub> permeability of both polymer membranes (106% for Matrimid and 379% for polysulfone), with modest increases in O<sub>2</sub>/N<sub>2</sub> selectivity. A detailed analysis of diffusivity and solubility showed that the overall O<sub>2</sub>/N<sub>2</sub> diffusion selectivity was improved substantially over that of a neat polymeric membrane with the incorporation of Cu<sub>3</sub>BTC<sub>2</sub> nanocrystals. A comparative study with literature data demonstrated that Cu<sub>3</sub>BTC<sub>2</sub> nanocrystals are far more effective than other metal-organic framework fillers tested to increase permeability in O<sub>2</sub>/N<sub>2</sub> separation.</p>","PeriodicalId":495,"journal":{"name":"BMC Chemical Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.35,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42480-019-0002-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5142011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Noble gas separation by a MOF with one-dimensional channels 具有一维通道的MOF分离惰性气体
IF 2.35 Pub Date : 2019-01-30 DOI: 10.1186/s42480-019-0003-y
Yang Liu, Jing Liu, Jianbo Hu

Noble gas separation by microporous materials is a promising alternative to energy-intensive cryogenic distillation method by reducing the separation cost; however, developing novel microporous materials with excellent noble gas separation performance is still challenging due to closing chemical and physical properties among the gases. In this study, we propose to separate the noble gases (He, Ne, Ar, Kr and Xe) utilizing a metal organic framework (MOF), named SIFSIX-3-Zn, with ultra-micron sized 1-dimenssional (1D) channels (3.84??). Density functional theory (DFT) calculations reveal that the 1D channels provide significant adsorption potential differences among the noble gas molecules in various sizes: the larger the molecular size, the stronger the adsorption potential. Grand canonical Monte Carlo (GCMC) simulations verify that the MOF exhibits exceptional equilibrium separation performance of noble gases. Remarkably, Xe/He and Xe/Ne adsorption selectivity can be as high as 645 and 596, respectively, at 298?K and 10?kPa. While Xe/Kr selectivity in mixed gas is around 12 with a Xe adsorption amount of about 2.27?mmol/g at 273?K and 100?kPa, making SIFSIX-3-Zn one of the promising materials for equilibrium separation of Xe/Kr mixtures.

利用微孔材料分离稀有气体可以降低分离成本,是替代高能耗深冷精馏方法的一种很有前途的方法;然而,由于气体之间的化学和物理性质接近,开发具有优异惰性气体分离性能的新型微孔材料仍然具有挑战性。在这项研究中,我们提出利用一种名为sif6 -3- zn的金属有机骨架(MOF),利用超微米尺寸的一维(1D)通道(3.84??)分离稀有气体(He, Ne, Ar, Kr和Xe)。密度泛函理论(DFT)计算表明,一维通道在不同大小的惰性气体分子之间提供了显著的吸附电位差异:分子尺寸越大,吸附电位越强。大正则蒙特卡罗(GCMC)模拟验证了MOF具有优异的稀有气体平衡分离性能。值得注意的是,Xe/He和Xe/Ne的吸附选择性分别高达645和596,在298?K和10kpa。混合气体中Xe/Kr的选择性约为12,Xe吸附量约为2.27?在273下的Mmol /g ?K和100?使sif6 -3- zn成为Xe/Kr混合物平衡分离的有前途的材料之一。
{"title":"Noble gas separation by a MOF with one-dimensional channels","authors":"Yang Liu,&nbsp;Jing Liu,&nbsp;Jianbo Hu","doi":"10.1186/s42480-019-0003-y","DOIUrl":"https://doi.org/10.1186/s42480-019-0003-y","url":null,"abstract":"<p>Noble gas separation by microporous materials is a promising alternative to energy-intensive cryogenic distillation method by reducing the separation cost; however, developing novel microporous materials with excellent noble gas separation performance is still challenging due to closing chemical and physical properties among the gases. In this study, we propose to separate the noble gases (He, Ne, Ar, Kr and Xe) utilizing a metal organic framework (MOF), named SIFSIX-3-Zn, with ultra-micron sized 1-dimenssional (1D) channels (3.84??). Density functional theory (DFT) calculations reveal that the 1D channels provide significant adsorption potential differences among the noble gas molecules in various sizes: the larger the molecular size, the stronger the adsorption potential. Grand canonical Monte Carlo (GCMC) simulations verify that the MOF exhibits exceptional equilibrium separation performance of noble gases. Remarkably, Xe/He and Xe/Ne adsorption selectivity can be as high as 645 and 596, respectively, at 298?K and 10?kPa. While Xe/Kr selectivity in mixed gas is around 12 with a Xe adsorption amount of about 2.27?mmol/g at 273?K and 100?kPa, making SIFSIX-3-Zn one of the promising materials for equilibrium separation of Xe/Kr mixtures.</p>","PeriodicalId":495,"journal":{"name":"BMC Chemical Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.35,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42480-019-0003-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5148395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
期刊
BMC Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1