Pub Date : 2023-01-01DOI: 10.1016/j.mrrev.2023.108455
Ruzanna Hayrapetyan , Théo Lacour , Annette Luce , Francis Finot , Marie-Christine Chagnon , Isabelle Séverin
Nanoparticles (NPs) are present in many daily life products with particular physical-chemical properties (size, density, porosity, geometry …) giving very interesting technological properties. Their use is continuously growing and NPs represent a new challenge in terms of risk assessment, consumers being multi-exposed. Toxic effects have already been identified such as oxidative stress, genotoxicity, inflammatory effects, and immune reactions, some of which are leading to carcinogenesis. Cancer is a complex phenomenon implying multiple modes of action and key events, and prevention strategies in cancer include a proper assessment of the properties of NPs. Therefore, introduction of new agents like NPs into the market creates fresh regulatory challenges for an adequate safety evaluation and requires new tools. The Cell Transformation Assay (CTA) is an in vitro test able of highlighting key events of characteristic phases in the cancer process, initiation and promotion. This review presents the development of this test and its use with NPs. The article underlines also the critical issues to address for assessing NPs carcinogenic properties and approaches for improving its relevance.
{"title":"The cell transformation assay to assess potential carcinogenic properties of nanoparticles","authors":"Ruzanna Hayrapetyan , Théo Lacour , Annette Luce , Francis Finot , Marie-Christine Chagnon , Isabelle Séverin","doi":"10.1016/j.mrrev.2023.108455","DOIUrl":"10.1016/j.mrrev.2023.108455","url":null,"abstract":"<div><p><span><span>Nanoparticles (NPs) are present in many daily life products with particular physical-chemical properties (size, density, porosity, geometry …) giving very interesting technological properties. Their use is continuously growing and NPs represent a new challenge in terms of risk assessment, consumers being multi-exposed. Toxic effects have already been identified such as </span>oxidative stress<span>, genotoxicity, inflammatory effects, and immune reactions, some of which are leading to carcinogenesis. Cancer is a complex phenomenon implying multiple modes of action and key events, and prevention strategies in cancer include a proper assessment of the properties of NPs. Therefore, introduction of new agents like NPs into the market creates fresh regulatory challenges for an adequate safety evaluation and requires new tools. The Cell Transformation Assay (CTA) is an </span></span><em>in vitro</em> test able of highlighting key events of characteristic phases in the cancer process, initiation and promotion. This review presents the development of this test and its use with NPs. The article underlines also the critical issues to address for assessing NPs carcinogenic properties and approaches for improving its relevance.</p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"791 ","pages":"Article 108455"},"PeriodicalIF":5.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9931716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.mrrev.2023.108453
Josefa Domenech , Balasubramanyam Annangi , Ricard Marcos , Alba Hernández , Julia Catalán
There is a growing concern regarding the potential health effects that continuous exposure to environmental micro- and nano-plastics (MNPLs) may cause on humans. Due to their persistent nature, MNPLs may accumulate in different organs and tissues and may induce in the long term the development of cancer. The present study aimed to review the existing literature on the carcinogenic potential of MNPLs. As studies directly assessing carcinogenicity were expected to be scarce, studies dealing with indirect outcomes associated with the carcinogenic process were considered in the literature search. Of the 126 studies screened, 19 satisfied the inclusion criteria. Besides, 7 additional cross-referenced articles, identified through a careful reading of the previously selected papers, also met the inclusion criteria and, consequently, were included in the review. Most of the selected studies were performed using in vitro models whereas about 40% of the studies were done in rodents, although none of them included a 2-year carcinogenicity assay. Most of the reviewed studies pointed out the potential of MNPLs to induce inflammation and genotoxicity, the latter being recognized as a strong predictor of carcinogenicity. These, along with other important findings such as the MNPLs’ ability to accumulate into cells and tissues, or their capacity to induce fibrosis, may suggest an association between MNPLs exposures and the carcinogenic potential. Nevertheless, the limited number of available studies precludes reaching clear conclusions. Therefore, this review also provides several recommendations to cover the current knowledge gaps and address the future evaluation of the MNPLs’ carcinogenic risk.
{"title":"Insights into the potential carcinogenicity of micro- and nano-plastics","authors":"Josefa Domenech , Balasubramanyam Annangi , Ricard Marcos , Alba Hernández , Julia Catalán","doi":"10.1016/j.mrrev.2023.108453","DOIUrl":"10.1016/j.mrrev.2023.108453","url":null,"abstract":"<div><p>There is a growing concern regarding the potential health effects that continuous exposure to environmental micro- and nano-plastics (MNPLs) may cause on humans. Due to their persistent nature, MNPLs may accumulate in different organs and tissues and may induce in the long term the development of cancer. The present study aimed to review the existing literature on the carcinogenic potential of MNPLs. As studies directly assessing carcinogenicity were expected to be scarce, studies dealing with indirect outcomes associated with the carcinogenic process were considered in the literature search. Of the 126 studies screened, 19 satisfied the inclusion criteria. Besides, 7 additional cross-referenced articles, identified through a careful reading of the previously selected papers, also met the inclusion criteria and, consequently, were included in the review. Most of the selected studies were performed using <em>in vitro</em> models whereas about 40% of the studies were done in rodents, although none of them included a 2-year carcinogenicity assay. Most of the reviewed studies pointed out the potential of MNPLs to induce inflammation and genotoxicity, the latter being recognized as a strong predictor of carcinogenicity. These, along with other important findings such as the MNPLs’ ability to accumulate into cells and tissues, or their capacity to induce fibrosis, may suggest an association between MNPLs exposures and the carcinogenic potential. Nevertheless, the limited number of available studies precludes reaching clear conclusions. Therefore, this review also provides several recommendations to cover the current knowledge gaps and address the future evaluation of the MNPLs’ carcinogenic risk.</p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"791 ","pages":"Article 108453"},"PeriodicalIF":5.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9931198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.mrrev.2023.108456
Esra Bozgeyik
From a single restriction fragment length polymorphism analysis to next generation sequencing analysis that screens the entire human genome, testing for genomic variations provides a great and robust approach to cancer testing. Non-coding RNAs have been shown to have a major impact on the development and progression of human cancers, including prostate cancer. However, the low stability of these molecules under laboratory conditions has made their clinical utility challenging, as in the case of PCA3 long non-coding RNA. Since testing for variations in genomic regions encoding non-coding RNAs offers a promising approach for cancer testing, identification and interpretation of single nucleotide polymorphisms associated with prostate cancer susceptibility is of great interest. Accordingly, here, for the first time, we review and discuss current available knowledge about genomic variation of long non-coding RNA molecules in prostate cancer.
{"title":"Variations in genomic regions encoding long non-coding RNA genes associated with increased prostate cancer risk","authors":"Esra Bozgeyik","doi":"10.1016/j.mrrev.2023.108456","DOIUrl":"10.1016/j.mrrev.2023.108456","url":null,"abstract":"<div><p><span><span>From a single restriction fragment length polymorphism analysis to next generation sequencing analysis that screens the entire </span>human genome, testing for genomic variations provides a great and robust approach to cancer testing. Non-coding RNAs have been shown to have a major impact on the development and progression of human cancers, including </span>prostate cancer<span>. However, the low stability of these molecules under laboratory conditions has made their clinical utility challenging, as in the case of PCA3 long non-coding RNA. Since testing for variations in genomic regions encoding non-coding RNAs offers a promising approach for cancer testing, identification and interpretation of single nucleotide polymorphisms associated with prostate cancer susceptibility is of great interest. Accordingly, here, for the first time, we review and discuss current available knowledge about genomic variation of long non-coding RNA molecules in prostate cancer.</span></p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"791 ","pages":"Article 108456"},"PeriodicalIF":5.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9567561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1016/j.mrrev.2023.108457
Anthony Shea , Josh Bartz , Lei Zhang , Xiao Dong
Genetic variations are one of the major causes of phenotypic variations between human individuals. Although beneficial as being the substrate of evolution, germline mutations may cause diseases, including Mendelian diseases and complex diseases such as diabetes and heart diseases. Mutations occurring in somatic cells are a main cause of cancer and likely cause age-related phenotypes and other age-related diseases. Because of the high abundance of genetic variations in the human genome, i.e., millions of germline variations per human subject and thousands of additional somatic mutations per cell, it is technically challenging to experimentally verify the function of every possible mutation and their interactions. Significant progress has been made to solve this problem using computational approaches, especially machine learning (ML). Here, we review the progress and achievements made in recent years in this field of research. We classify the computational models in two ways: one according to their prediction goals including protein structural alterations, gene expression changes, and disease risks, and the other according to their methodologies, including non-machine learning methods, classical machine learning methods, and deep neural network methods. For models in each category, we discuss their architecture, prediction accuracy, and potential limitations. This review provides new insights into the applications and future directions of computational approaches in understanding the role of mutations in aging and disease.
{"title":"Predicting mutational function using machine learning","authors":"Anthony Shea , Josh Bartz , Lei Zhang , Xiao Dong","doi":"10.1016/j.mrrev.2023.108457","DOIUrl":"10.1016/j.mrrev.2023.108457","url":null,"abstract":"<div><p><span>Genetic variations are one of the major causes of phenotypic variations between human individuals. Although beneficial as being the substrate of evolution, </span>germline<span><span><span><span> mutations may cause diseases, including Mendelian diseases and complex diseases such as diabetes and heart diseases. Mutations occurring in somatic cells are a main cause of cancer and likely cause age-related phenotypes and other age-related diseases. Because of the high abundance of genetic variations in the </span>human genome, i.e., millions of germline variations per human subject and thousands of additional </span>somatic mutations per cell, it is technically challenging to experimentally verify the function of every possible mutation and their interactions. Significant progress has been made to solve this problem using computational approaches, especially machine learning (ML). Here, we review the progress and achievements made in recent years in this field of research. We classify the </span>computational models<span> in two ways: one according to their prediction goals including protein structural alterations, gene expression changes, and disease risks, and the other according to their methodologies, including non-machine learning methods, classical machine learning methods, and deep neural network methods. For models in each category, we discuss their architecture, prediction accuracy, and potential limitations. This review provides new insights into the applications and future directions of computational approaches in understanding the role of mutations in aging and disease.</span></span></p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"791 ","pages":"Article 108457"},"PeriodicalIF":5.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9574389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1016/j.mrrev.2022.108440
Xihan Guo , Henning Hintzsche , Weijiang Xu , Juan Ni , Jinglun Xue , Xu Wang
In higher eukaryotes, sophisticate regulation of genome function requires all chromosomes to be packed into a single nucleus. Micronucleus (MN), the dissociative nucleus-like structure frequently observed in aging and multiple disease settings, has critical, yet under-recognized, pathophysiological functions. Micronuclei (MNi) have recently emerged as major sources of cytosolic DNA that can activate the cGAS-STING axis in a cell-intrinsic manner. However, MNi induced from different genotoxic stressors display great heterogeneity in binding or activating cGAS and the signaling responses downstream of the MN-induced cGAS-STING axis have divergent outcomes including autoimmunity, autoinflammation, metastasis, or cell death. Thus, full characterization of molecular network underpinning the interplay of cGAS and MN is important to elucidate the pathophysiological roles of immunogenic MN and design improved drugs that selectively target cancer via boosting the MN-derived cGAS-STING axis. Here, we summarize our current understanding of the mechanisms for self-DNA discrimination by cGAS. We focus on discussing how MN immunogencity is dictated by multiple mechanisms including integrity of micronuclear envelope, state of nucleosome and DNA, competitive factors, damaged mitochondrial DNA and micronucleophagy. We also describe emerging links between immunogenic MN and human diseases including cancer, neurodegenerative diseases and COVID-19. Particularly, we explore the exciting concept of inducing immunogenic MN as a therapeutic approach in treating cancer. We propose a new theoretical framework to describe immunogenic MN as a biological sensor to modulate cellular processes in response to genotoxic stress and provide perspectives on developing novel experimental approaches to unravel the complexity of MN immunogenicity regulation and immunogenic MN pathophysiology.
{"title":"Interplay of cGAS with micronuclei: Regulation and diseases","authors":"Xihan Guo , Henning Hintzsche , Weijiang Xu , Juan Ni , Jinglun Xue , Xu Wang","doi":"10.1016/j.mrrev.2022.108440","DOIUrl":"10.1016/j.mrrev.2022.108440","url":null,"abstract":"<div><p><span><span><span>In higher eukaryotes, sophisticate regulation of genome function requires all chromosomes to be packed into a single nucleus. Micronucleus (MN), the dissociative nucleus-like structure frequently observed in aging and multiple disease settings, has critical, yet under-recognized, pathophysiological functions. Micronuclei (MNi) have recently emerged as major sources of cytosolic DNA that can activate the cGAS-STING axis in a cell-intrinsic manner. However, MNi induced from different genotoxic stressors display great heterogeneity in binding or activating </span>cGAS<span> and the signaling responses downstream of the MN-induced cGAS-STING axis have divergent outcomes including autoimmunity, autoinflammation, metastasis, or cell death. Thus, full characterization of molecular network underpinning the interplay of cGAS and MN is important to elucidate the pathophysiological roles of immunogenic MN and design improved drugs that selectively target cancer via boosting the MN-derived cGAS-STING axis. Here, we summarize our current understanding of the mechanisms for self-DNA discrimination by cGAS. We focus on discussing how MN immunogencity is dictated by multiple mechanisms including integrity of micronuclear envelope, state of nucleosome and DNA, competitive factors, damaged mitochondrial DNA and micronucleophagy. We also describe emerging links between immunogenic MN and human diseases including cancer, neurodegenerative diseases and COVID-19. Particularly, we explore the exciting concept of inducing immunogenic MN as a therapeutic approach in treating cancer. We propose a new theoretical framework to describe immunogenic MN as a biological sensor to modulate </span></span>cellular processes in response to genotoxic stress and provide perspectives on developing novel experimental approaches to unravel the complexity of MN </span>immunogenicity<span> regulation and immunogenic MN pathophysiology.</span></p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"790 ","pages":"Article 108440"},"PeriodicalIF":5.3,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10801738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1016/j.mrrev.2022.108443
Elzbieta Poreba , Krzysztof Lesniewicz , Julia Durzynska
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone–Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
{"title":"Histone–lysine N-methyltransferase 2 (KMT2) complexes – a new perspective","authors":"Elzbieta Poreba , Krzysztof Lesniewicz , Julia Durzynska","doi":"10.1016/j.mrrev.2022.108443","DOIUrl":"10.1016/j.mrrev.2022.108443","url":null,"abstract":"<div><p>Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone–Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or <em>de novo</em> mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.</p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"790 ","pages":"Article 108443"},"PeriodicalIF":5.3,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1383574222000333/pdfft?md5=011323914a0349da2e62257de103063a&pid=1-s2.0-S1383574222000333-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10511422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1016/j.mrrev.2022.108426
Krystyna Wasilewska , Tomasz Gambin , Małgorzata Rydzanicz , Krzysztof Szczałuba , Rafał Płoski
The technological progress of massively parallel sequencing (MPS) has triggered a remarkable development in the research on postzygotic mutations. Although the overwhelming majority of studies in the field focus on oncogenesis, non-neoplastic diseases are attracting more and more attention. The aim of this review was to summarize some of the most recent findings in the field of somatic mosaicism in diseases other than neoplastic events. We discuss the abundance and role of postzygotic mutations, with a special emphasis on disorders which occur only in a mosaic form (obligatory mosaic diseases; OMDs). Based on the list of OMDs compiled from the published literature and three databases (OMIM, Orphanet and MosaicBase), we demonstrate the prevalence of cancer-related genes across OMDs and suggest other sources to further explore OMDs and OMD-related genes. Additionally, we comment on some practical aspects related to mosaic diseases, such as approaches to tissue sampling, the MPS coverage required to detect variants at a very low frequency, as well as on bioinformatic and molecular tools dedicated to detect somatic mutations in MPS data.
{"title":"Postzygotic mutations and where to find them – Recent advances and future implications in the field of non-neoplastic somatic mosaicism","authors":"Krystyna Wasilewska , Tomasz Gambin , Małgorzata Rydzanicz , Krzysztof Szczałuba , Rafał Płoski","doi":"10.1016/j.mrrev.2022.108426","DOIUrl":"10.1016/j.mrrev.2022.108426","url":null,"abstract":"<div><p>The technological progress of massively parallel sequencing (MPS) has triggered a remarkable development in the research on postzygotic mutations. Although the overwhelming majority of studies in the field focus on oncogenesis, non-neoplastic diseases are attracting more and more attention. The aim of this review was to summarize some of the most recent findings in the field of somatic mosaicism in diseases other than neoplastic events. We discuss the abundance and role of postzygotic mutations, with a special emphasis on disorders which occur only in a mosaic form (obligatory mosaic diseases; OMDs). Based on the list of OMDs compiled from the published literature and three databases (OMIM, Orphanet and MosaicBase), we demonstrate the prevalence of cancer-related genes across OMDs and suggest other sources to further explore OMDs and OMD-related genes. Additionally, we comment on some practical aspects related to mosaic diseases, such as approaches to tissue sampling, the MPS coverage required to detect variants at a very low frequency, as well as on bioinformatic and molecular tools dedicated to detect somatic mutations in MPS data.</p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"790 ","pages":"Article 108426"},"PeriodicalIF":5.3,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10452694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1016/j.mrrev.2022.108442
Helaleh Vaezi Heris , Zohreh Zahraei
Diabetes, one of the most common multifactorial metabolic disorders, is a jeopardizing cause of human health worldwide. MicroRNAs (miRNAs) are a group of small non-coding RNAs that have been contributed to the regulation of gene expression through post-transcriptional mechanisms. The potential role of miRNAs has been studied in the most of biological processes and mechanisms underlying the progression of variety diseases including diabetes. In this review, we focus on the role of miRNAs in regulating pivotal molecular and cellular mechanisms associated with immune system that progress diabetic disorders.
{"title":"miRNAs: Regulators of immune system in diabetes","authors":"Helaleh Vaezi Heris , Zohreh Zahraei","doi":"10.1016/j.mrrev.2022.108442","DOIUrl":"10.1016/j.mrrev.2022.108442","url":null,"abstract":"<div><p><span>Diabetes, one of the most common multifactorial metabolic disorders, is a jeopardizing cause of human health worldwide. </span>MicroRNAs<span> (miRNAs) are a group of small non-coding RNAs that have been contributed to the regulation of gene expression through post-transcriptional mechanisms. The potential role of miRNAs has been studied in the most of biological processes and mechanisms underlying the progression of variety diseases including diabetes. In this review, we focus on the role of miRNAs in regulating pivotal molecular and cellular mechanisms associated with immune system that progress diabetic disorders.</span></p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"790 ","pages":"Article 108442"},"PeriodicalIF":5.3,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10452728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1016/j.mrrev.2022.108441
Emilio Di Ianni , Nicklas Raun Jacobsen , Ulla Birgitte Vogel , Peter Møller
Carbon black exposure causes oxidative stress, inflammation and genotoxicity. The objective of this systematic review was to assess the contributions of primary (i.e. direct formation of DNA damage) and secondary genotoxicity (i.e., DNA lesions produced indirectly by inflammation) to the overall level of DNA damage by carbon black. The database is dominated by studies that have measured DNA damage by the comet assay. Cell culture studies indicate a genotoxic action of carbon black, which might be mediated by oxidative stress. Many in vivo studies originate from one laboratory that has investigated the genotoxic effects of Printex 90 in mice by intra-tracheal instillation. Meta-analysis and pooled analysis of these results demonstrate that Printex 90 exposure is associated with a slightly increased level of DNA strand breaks in bronchoalveolar lavage cells and lung tissue. Other types of genotoxic damage have not been investigated as thoroughly as DNA strand breaks, although there is evidence to suggest that carbon black exposure might increase the mutation frequency and cytogenetic endpoints. Stratification of studies according to concurrent inflammation and DNA damage does not indicate that carbon black exposure gives rise to secondary genotoxicity. Even substantial pulmonary inflammation is at best only associated with a weak genotoxic response in lung tissue. In conclusion, the review indicates that nanosized carbon black is a weak genotoxic agent and this effect is more likely to originate from a primary genotoxic mechanism of action, mediated by e.g., oxidative stress, than inflammation-driven (secondary) genotoxicity.
{"title":"Systematic review on primary and secondary genotoxicity of carbon black nanoparticles in mammalian cells and animals","authors":"Emilio Di Ianni , Nicklas Raun Jacobsen , Ulla Birgitte Vogel , Peter Møller","doi":"10.1016/j.mrrev.2022.108441","DOIUrl":"10.1016/j.mrrev.2022.108441","url":null,"abstract":"<div><p>Carbon black exposure causes oxidative stress, inflammation and genotoxicity. The objective of this systematic review was to assess the contributions of primary (i.e. direct formation of DNA damage) and secondary genotoxicity (i.e., DNA lesions produced indirectly by inflammation) to the overall level of DNA damage by carbon black. The database is dominated by studies that have measured DNA damage by the comet assay. Cell culture studies indicate a genotoxic action of carbon black, which might be mediated by oxidative stress. Many in vivo studies originate from one laboratory that has investigated the genotoxic effects of Printex 90 in mice by intra-tracheal instillation. Meta-analysis and pooled analysis of these results demonstrate that Printex 90 exposure is associated with a slightly increased level of DNA strand breaks in bronchoalveolar lavage cells and lung tissue. Other types of genotoxic damage have not been investigated as thoroughly as DNA strand breaks, although there is evidence to suggest that carbon black exposure might increase the mutation frequency and cytogenetic endpoints. Stratification of studies according to concurrent inflammation and DNA damage does not indicate that carbon black exposure gives rise to secondary genotoxicity. Even substantial pulmonary inflammation is at best only associated with a weak genotoxic response in lung tissue. In conclusion, the review indicates that nanosized carbon black is a weak genotoxic agent and this effect is more likely to originate from a primary genotoxic mechanism of action, mediated by e.g., oxidative stress, than inflammation-driven (secondary) genotoxicity.</p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"790 ","pages":"Article 108441"},"PeriodicalIF":5.3,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138357422200031X/pdfft?md5=7aaf9a1bad28f031cdb0e961b8a19d5a&pid=1-s2.0-S138357422200031X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10458468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1016/j.mrrev.2022.108436
Bruno César Feltes , Carlos Frederico Martins Menck
POLη, encoded by the POLH gene, is a crucial protein for replicating damaged DNA and the most studied specialized translesion synthesis polymerases. Mutations in POLη are associated with cancer and the human syndrome xeroderma pigmentosum variant, which is characterized by extreme photosensitivity and an increased likelihood of developing skin cancers. The myriad of structural information about POLη is vast, covering dozens of different mutants, numerous crucial residues, domains, and posttranslational modifications that are essential for protein function within cells. Since POLη is key vital enzyme for cell survival, and mutations in this protein are related to aggressive diseases, understanding its structure is crucial for biomedical sciences, primarily due to its similarities with other Y-family polymerases and its potential as a targeted therapy-drug for tumors. This work provides an up-to-date review on structural aspects of the human POLη: from basic knowledge about critical residues and protein domains to its mutant variants, posttranslational modifications, and our current understanding of therapeutic molecules that target POLη. Thus, this review provides lessons about POLη's structure and gathers critical discussions and hypotheses that may contribute to understanding this protein's vital roles within the cells.
{"title":"Current state of knowledge of human DNA polymerase eta protein structure and disease-causing mutations","authors":"Bruno César Feltes , Carlos Frederico Martins Menck","doi":"10.1016/j.mrrev.2022.108436","DOIUrl":"10.1016/j.mrrev.2022.108436","url":null,"abstract":"<div><p>POLη, encoded by the <em>POLH</em><span><span> gene, is a crucial protein for replicating damaged DNA and the most studied specialized translesion synthesis </span>polymerases<span><span>. Mutations in POLη are associated with cancer and the human syndrome xeroderma pigmentosum variant, which is characterized by extreme </span>photosensitivity<span><span> and an increased likelihood of developing skin cancers. The myriad of structural information about POLη is vast, covering dozens of different mutants, numerous crucial residues, domains, and posttranslational modifications that are essential for protein function within cells. Since POLη is key vital </span>enzyme<span> for cell survival, and mutations in this protein are related to aggressive diseases, understanding its structure is crucial for biomedical sciences, primarily due to its similarities with other Y-family polymerases and its potential as a targeted therapy-drug for tumors. This work provides an up-to-date review on structural aspects of the human POLη: from basic knowledge about critical residues and protein domains to its mutant variants, posttranslational modifications, and our current understanding of therapeutic molecules that target POLη. Thus, this review provides lessons about POLη's structure and gathers critical discussions and hypotheses that may contribute to understanding this protein's vital roles within the cells.</span></span></span></span></p></div>","PeriodicalId":49789,"journal":{"name":"Mutation Research-Reviews in Mutation Research","volume":"790 ","pages":"Article 108436"},"PeriodicalIF":5.3,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10821092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}