Pub Date : 2024-01-01DOI: 10.1016/j.mrfmmm.2024.111852
Bo-chao Zhang , Si-yuan Ma , Ping Zhu , Liang-yu Zhu , Xiao-xiao Zhao , Chun Pu
Objectives
Our group previously found that LINC00665 was upregulated in hepatocellular carcinoma (HCC) tissues through database analysis; however, the potential molecular mechanism of LINC00665 in HCC progression still needs further study.
Methods
qRTPCR was performed to determine the differential expression of LINC00665 and let-7i in HCC cells. Dual-luciferase reporter assays were performed to analyze the interaction of LINC00665 and let-7i. CCK-8 assays, scratch assays, Transwell invasion assays, qRTPCR and western blotting were performed to determine the regulatory mechanism of LINC00665/let-7i/HMGA1 in HCC cells.
Results
LINC00665 was upregulated in HCC cells compared with normal hepatocytes. A potential binding site between LINC00665 and let-7i was confirmed by dual-luciferase reporter assay. In HCC cells, inhibition of LINC00665 significantly reduced cell proliferation, migration and invasion ability via the let-7i/HMGA1 signaling axis.
Conclusion
LINC00665 promotes the proliferation and invasion of HCC cells via the let-7i/HMGA1 signaling axis.
{"title":"LINC00665 target let-7i/HMGA1 promotes the proliferation and invasion of hepatoma cells","authors":"Bo-chao Zhang , Si-yuan Ma , Ping Zhu , Liang-yu Zhu , Xiao-xiao Zhao , Chun Pu","doi":"10.1016/j.mrfmmm.2024.111852","DOIUrl":"10.1016/j.mrfmmm.2024.111852","url":null,"abstract":"<div><h3>Objectives</h3><p>Our group previously found that LINC00665 was upregulated in hepatocellular carcinoma (HCC) tissues through database analysis; however, the potential molecular mechanism of LINC00665 in HCC progression still needs further study.</p></div><div><h3>Methods</h3><p>qRT<img>PCR was performed to determine the differential expression of LINC00665 and let-7i in HCC cells. Dual-luciferase reporter assays were performed to analyze the interaction of LINC00665 and let-7i. CCK-8 assays, scratch assays, Transwell invasion assays, qRT<img>PCR and western blotting were performed to determine the regulatory mechanism of LINC00665/let-7i/HMGA1 in HCC cells.</p></div><div><h3>Results</h3><p>LINC00665 was upregulated in HCC cells compared with normal hepatocytes. A potential binding site between LINC00665 and let-7i was confirmed by dual-luciferase reporter assay. In HCC cells, inhibition of LINC00665 significantly reduced cell proliferation, migration and invasion ability via the let-7i/HMGA1 signaling axis.</p></div><div><h3>Conclusion</h3><p>LINC00665 promotes the proliferation and invasion of HCC cells via the let-7i/HMGA1 signaling axis.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"828 ","pages":"Article 111852"},"PeriodicalIF":2.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0027510724000022/pdfft?md5=8d9fc88d5d09a9dc4462548b36a1802d&pid=1-s2.0-S0027510724000022-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139897099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-10DOI: 10.1016/j.mrfmmm.2023.111849
Ekta Singh, Lohit Raj Shivwanshi, Anil Kumar
Background
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy affecting millions of individuals worldwide. It is believed that the prevalence of G6PD deficiency in different ethnic populations increases its association with other pathological conditions especially sickle cell anemia (SCA), as they both are well-known adaptations against malaria. Thus, the present study aims to determine the frequency of G6PD deficiency among SCA patients and the association between them in the tribal community (Gond) of Chhattisgarh, India.
Method
A total of 810 samples from three different age groups i.e., 10–20, 21–30, and 31–40 years were collected from the tribal community (Gond) of Kabirdham district of Chhattisgarh. The frequency of SCA was determined by a slide test followed by cellulose acetate paper electrophoresis and G6PD deficiency by methemoglobin reduction test. Glutathione-S-Transferase (GST) gene polymorphism in sickle celled individuals and variant analysis in G6PD deficient individuals were analyzed by RT-PCR.
Results
The frequency of SCA and G6PD deficiency was reported at 9.75% and 17.16% respectively and a high degree of positive correlation between SCA and G6PD deficiency was also found (HbSS-G6PD deficient: r = 0.84, p = .356; HbAS-G6PD deficient: r = 0.89, p = .345). Results of the GST gene revealed that GSTM1 and GSTT1 genes are present in almost all sickled individuals while GSTP1 and GSTP1a exist in the mutated form in a maximum percentage of individuals. G6PD variant analysis also showed that 70% and 60% of individuals have mutated Mahidol and Union variants respectively, while none of the individuals have mutated Chinese variants.
Conclusion
A high degree of correlation between SCA and G6PD was reported among Gond tribes of Chhattisgarh, India with a high degree of mutated GSTP1, GSTP1a, Mahidol, and Union variants. The study makes it possible to take specific preventive measures concerning the medication of anti-oxidizing drugs.
{"title":"A positive correlation between mutated gene of sickle cell anemia and glucose-6-phosphate dehydrogenase among gond tribes of Chhattisgarh, India","authors":"Ekta Singh, Lohit Raj Shivwanshi, Anil Kumar","doi":"10.1016/j.mrfmmm.2023.111849","DOIUrl":"https://doi.org/10.1016/j.mrfmmm.2023.111849","url":null,"abstract":"<div><h3>Background</h3><p>Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy<span> affecting millions of individuals worldwide. It is believed that the prevalence of G6PD deficiency in different ethnic populations increases its association with other pathological conditions especially sickle cell anemia (SCA), as they both are well-known adaptations against malaria. Thus, the present study aims to determine the frequency of G6PD deficiency among SCA patients and the association between them in the tribal community (Gond) of Chhattisgarh, India.</span></p></div><div><h3>Method</h3><p><span>A total of 810 samples from three different age groups i.e., 10–20, 21–30, and 31–40 years were collected from the tribal community (Gond) of Kabirdham district of Chhattisgarh. The frequency of SCA was determined by a slide test followed by cellulose acetate<span> paper electrophoresis<span> and G6PD deficiency by methemoglobin reduction test. Glutathione-S-Transferase (GST) </span></span></span>gene polymorphism in sickle celled individuals and variant analysis in G6PD deficient individuals were analyzed by RT-PCR.</p></div><div><h3>Results</h3><p>The frequency of SCA and G6PD deficiency was reported at 9.75% and 17.16% respectively and a high degree of positive correlation between SCA and G6PD deficiency was also found (HbSS-G6PD deficient: r = 0.84, <em>p</em> = .356; HbAS-G6PD deficient: r = 0.89, <em>p</em><span><span> = .345). Results of the GST gene revealed that GSTM1 and GSTT1 genes are present in almost all sickled individuals while </span>GSTP1 and GSTP1a exist in the mutated form in a maximum percentage of individuals. G6PD variant analysis also showed that 70% and 60% of individuals have mutated Mahidol and Union variants respectively, while none of the individuals have mutated Chinese variants.</span></p></div><div><h3>Conclusion</h3><p>A high degree of correlation between SCA and G6PD was reported among Gond tribes of Chhattisgarh, India with a high degree of mutated GSTP1, GSTP1a, Mahidol, and Union variants. The study makes it possible to take specific preventive measures concerning the medication of anti-oxidizing drugs.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"828 ","pages":"Article 111849"},"PeriodicalIF":2.3,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138839574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.1016/j.mrfmmm.2023.111848
Elham Khakshour , Mohammad Taghi Bahreyni-Toossi , Kazem Anvari , Mohammad Amin Shahram , Fereshteh Vaziri-Nezamdoust , Hosein Azimian
Purpose
Glioblastoma (GBM) is considered the most common and lethal type of brain tumor with a poor prognosis. GBM treatment has challenges due to its aggressive nature, which often causes treatment failure and recurrence. Hypoxia is one of the characteristics of glioblastoma tumors that contribute to radioresistance and malignant phenotypes of GBM. In this study, we aimed to determine the effects of hypoxia on the radiosensitivity of U87 GBM cells by the hypoxia-mimicking model.
Methods
Following the treatment of cells with different concentrations of CoCl2, an MTT assay was used to evaluate the cytotoxicity of CoCl2. To understand the effects of Ionizing radiation on CoCl2-treated groups, cells were exposed to irradiation after pretreating with 100 μM CoCl2, and a clonogenic survival assay was performed to determine the radiosensitivity of U87 cells. Also, the intracellular Reactive oxygen level was measured by 2′,7′–dichlorofluorescein diacetate (DCFDA) probe staining. Additionally, the expression of hypoxia-associated genes, including HIF-1α, HIF-2α, and their target genes (GLUT-1), was monitored by reverse transcription polymerase chain reaction (RT-PCR).
Results
Our study revealed that the cell viability of CoCl2-treated cells was decreased in a concentration-dependent manner. Also, CoCl2 did not cause any cytotoxicity on U87 cells at a concentration of 100 μM after treatment for 24 h. Colony formation assay showed that CoCl2 pretreatment induced radioresistance of tumor cells compared to non-treated cells. Also, CoCl2 can protect cells against irradiation by the clearance of ROS. Moreover, Real-time results showed that the mRNA expression of HIF-1α and GLUT-1 were significantly upregulated following hypoxia induction and/or irradiation condition. However, the level of HIF-2α mRNA did not change significantly in hypoxia or irradiation alone conditions, but it increased significantly only in hypoxia + irradiation conditions.
Conclusion
Taken together, our results indicated that simulating hypoxia by CoCl2 can effectively increase hypoxia-associated genes, specially HIF-1α and GLUT-1, but did not affect HIF-2α gene expression. Also, it can increase the clearance of ROS, respectively, and it leads to inducing radioresistance of U87 cells.
{"title":"Evaluation of the effects of simulated hypoxia by CoCl2 on radioresistance and change of hypoxia-inducible factors in human glioblastoma U87 tumor cell line","authors":"Elham Khakshour , Mohammad Taghi Bahreyni-Toossi , Kazem Anvari , Mohammad Amin Shahram , Fereshteh Vaziri-Nezamdoust , Hosein Azimian","doi":"10.1016/j.mrfmmm.2023.111848","DOIUrl":"https://doi.org/10.1016/j.mrfmmm.2023.111848","url":null,"abstract":"<div><h3>Purpose</h3><p>Glioblastoma<span><span> (GBM) is considered the most common and lethal type of brain tumor with a poor prognosis. GBM treatment has challenges due to its aggressive nature, which often causes treatment failure and recurrence. Hypoxia is one of the characteristics of glioblastoma tumors that contribute to </span>radioresistance<span> and malignant phenotypes of GBM. In this study, we aimed to determine the effects of hypoxia on the radiosensitivity of U87 GBM cells by the hypoxia-mimicking model.</span></span></p></div><div><h3>Methods</h3><p>Following the treatment of cells with different concentrations of CoCl<sub>2</sub><span>, an MTT assay was used to evaluate the cytotoxicity of CoCl</span><sub>2</sub><span>. To understand the effects of Ionizing radiation on CoCl</span><sub>2</sub>-treated groups, cells were exposed to irradiation after pretreating with 100 μM CoCl<sub>2,</sub><span> and a clonogenic survival assay was performed to determine the radiosensitivity of U87 cells. Also, the intracellular Reactive oxygen level was measured by 2′,7′–dichlorofluorescein diacetate<span> (DCFDA) probe staining. Additionally, the expression of hypoxia-associated genes, including HIF-1α, HIF-2α, and their target genes (GLUT-1), was monitored by reverse transcription polymerase chain reaction (RT-PCR).</span></span></p></div><div><h3>Results</h3><p><span>Our study revealed that the cell viability of CoCl</span><sub>2</sub>-treated cells was decreased in a concentration-dependent manner. Also, CoCl<sub>2</sub> did not cause any cytotoxicity on U87 cells at a concentration of 100 μM after treatment for 24 h. Colony formation assay showed that CoCl<sub>2</sub><span> pretreatment induced radioresistance of tumor cells compared to non-treated cells. Also, CoCl</span><sub>2</sub> can protect cells against irradiation by the clearance of ROS. Moreover, Real-time results showed that the mRNA expression of HIF-1α and GLUT-1 were significantly upregulated following hypoxia induction and/or irradiation condition. However, the level of HIF-2α mRNA did not change significantly in hypoxia or irradiation alone conditions, but it increased significantly only in hypoxia + irradiation conditions.</p></div><div><h3>Conclusion</h3><p>Taken together, our results indicated that simulating hypoxia by CoCl<sub>2</sub> can effectively increase hypoxia-associated genes, specially HIF-1α and GLUT-1, but did not affect HIF-2α gene expression. Also, it can increase the clearance of ROS, respectively, and it leads to inducing radioresistance of U87 cells.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"828 ","pages":"Article 111848"},"PeriodicalIF":2.3,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139050407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1016/j.mrfmmm.2023.111847
Haktan Bağış Erdem , Mustafa Tarık Alay , Zeynep Özdemir , Ezgi Çevik , Öztürk Ateş , Cengiz Karaçin , İbrahim Şahin , Mutlu Doğan , Taha Bahsi
Objective
Cigarette smoking is a primary risk factor, linked to 80% of LC deaths. TP53, a key gene, is implicated in various cancers, with TP53 alterations in 36.7% of cancers. This research aims to investigate TP53 mutations detected in NSCLC patients by liquid biopsy and explore the relationship between these mutations and smoking history.
Material and method
The study enrolled a total of 340 patients diagnosed with non-small cell lung cancer (NSCLC). For sequencing, the Illumina NextSeq 500 system was utilized. The oncogenicity of the variants was assessed according to the ClinGen/CGC/VICC SOP and the variants were categorized into four tiers according to AMP/ASCO/CAP.
Results
The most common mutations were in TP53 (48.7%), followed by EGFR, PIK3CA, and PTEN. Missense mutations were frequent, with TP53 and EGFR having higher rates in ever-smokers. No indels or complex mutations were found in ever-smokers. Patient age ranged from 20 to 86 years. Tier I-II variants were more common in ever-smokers, while Tier III variants were prevalent in never-smokers. TP53 mutations were more frequent in ever-smokers, showing a strong association with smoking. Domain distribution showed differences in PIK3CA. Transversion/transition ratios varied by gene and smoking status.
Discussion
The presence of TP53 mutations is strongly associated with both cigarette smoking and elevated Tv/Ti ratios. The tier status of TP53, EGFR, and PTEN variants does not show a specific domain distribution, but interesting associations are observed between the tier status and domain distribution in PIK3CA variants. Therefore, further comprehensive investigations are needed to explore this entity, as well as the underlying factors contributing to the increased Tv/Ti rates in the TP53 gene. Such research will provide deeper insights into the genetic alterations associated with smoking and tumor heterogeneity, ultimately aiding in the development of targeted therapies.
{"title":"Higher TP53 somatic mutation prevalence from liquid biopsy analysis in ever smoker non-small-cell lung cancer patients","authors":"Haktan Bağış Erdem , Mustafa Tarık Alay , Zeynep Özdemir , Ezgi Çevik , Öztürk Ateş , Cengiz Karaçin , İbrahim Şahin , Mutlu Doğan , Taha Bahsi","doi":"10.1016/j.mrfmmm.2023.111847","DOIUrl":"10.1016/j.mrfmmm.2023.111847","url":null,"abstract":"<div><h3>Objective</h3><p>Cigarette smoking is a primary risk factor, linked to 80% of LC deaths. TP53, a key gene, is implicated in various cancers, with TP53 alterations in 36.7% of cancers. This research aims to investigate TP53 mutations detected in NSCLC patients by liquid biopsy and explore the relationship between these mutations and smoking history.</p></div><div><h3>Material and method</h3><p>The study enrolled a total of 340 patients diagnosed with non-small cell lung cancer (NSCLC). For sequencing, the Illumina NextSeq 500 system was utilized. The oncogenicity of the variants was assessed according to the ClinGen/CGC/VICC SOP and the variants were categorized into four tiers according to AMP/ASCO/CAP.</p></div><div><h3>Results</h3><p>The most common mutations were in TP53 (48.7%), followed by EGFR, PIK3CA, and PTEN. Missense mutations<span> were frequent, with TP53 and EGFR having higher rates in ever-smokers. No indels or complex mutations were found in ever-smokers. Patient age ranged from 20 to 86 years. Tier I-II variants were more common in ever-smokers, while Tier III variants were prevalent in never-smokers. TP53 mutations were more frequent in ever-smokers, showing a strong association with smoking. Domain distribution showed differences in PIK3CA. Transversion/transition ratios varied by gene and smoking status.</span></p></div><div><h3>Discussion</h3><p>The presence of TP53 mutations is strongly associated with both cigarette smoking and elevated Tv/Ti ratios. The tier status of TP53, EGFR, and PTEN variants does not show a specific domain distribution, but interesting associations are observed between the tier status and domain distribution in PIK3CA variants. Therefore, further comprehensive investigations are needed to explore this entity, as well as the underlying factors contributing to the increased Tv/Ti rates in the TP53 gene. Such research will provide deeper insights into the genetic alterations associated with smoking and tumor heterogeneity, ultimately aiding in the development of targeted therapies.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"828 ","pages":"Article 111847"},"PeriodicalIF":2.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138496271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To study the impact of Mediator complex subunit 12 (MED12) gene variants on the encoded protein’s function and pathogenic relevance for genesis of uterine leiomyoma’s (ULs).
Methods
Mutational analysis in exon-2 of MED12 gene was performed by PCR amplification and DNA sequencing in 89 clinically diagnosed ULs tissues. Pathogenicity prediction of variation was performed by computational analysis. The functional effects of missense variation were done by quantity RT-PCR and western blot analysis.
Result(s)
Out of 89 samples, 40 (44.94%) had missense variation in 14 different CDS position of exon-2 of MED12 gene. Out of 40 missense variation, codon 44 had 25 (62.5%) looking as a hotspot region for mutation for ULs, because CDS position c130 and c131present at codon 44 that have necleotide change G>A, T, C at c130 and c131 have necleotide change G>A and C. We also find somenovel somatic mutations oncodon 36 (T > C), 38 (G>T) of exon-2 and 88 (G>C) of intron-2. No mutations were detected in uterine myometrium samples. Our computational analysis suggests that change in Med12c .131 G>A leads to single substitution of amino acid [Glycine (G) to Aspartate (D)] which has a pathogenic and lethal impact and may cause instability of MED12 protein. Further, analysis of extracellular matrix (ECM) component (MMP-2 & 9, COL4A2 and α-SMA) mRNA and protein expression levels in the set of ULs having MED12 mutation showed significantly higher expression of MMP-9 and α-SMA.
Conclusion(s)
The findings of present study suggest that missense variation in codon 44 of MED12 gene lead to the genesis of leiomyoma’s through over-expression of MMP-9 of ECM pathway which could be therapeutically targeted for non-surgical management of ULs.
{"title":"Variants in exon 2 of MED12 gene causes uterine leiomyoma’s through over-expression of MMP-9 of ECM pathway","authors":"Vivek Pandey , Priyanka Jain , Souradip Chatterjee , Anjali Rani , Anima Tripathi , Pawan K. Dubey","doi":"10.1016/j.mrfmmm.2023.111839","DOIUrl":"10.1016/j.mrfmmm.2023.111839","url":null,"abstract":"<div><h3>Aims</h3><p>To study the impact of Mediator complex subunit 12 (MED12) gene variants on the encoded protein’s function and pathogenic relevance for genesis of uterine leiomyoma’s (ULs).</p></div><div><h3>Methods</h3><p>Mutational analysis in exon-2 of MED12 gene was performed by PCR amplification and DNA sequencing<span> in 89 clinically diagnosed ULs tissues. Pathogenicity<span> prediction of variation was performed by computational analysis. The functional effects of missense<span> variation were done by quantity RT-PCR and western blot analysis.</span></span></span></p></div><div><h3>Result(s)</h3><p>Out of 89 samples, 40 (44.94%) had missense variation in 14 different CDS position of exon-2 of MED12 gene. Out of 40 missense variation, codon 44 had 25 (62.5%) looking as a hotspot region for mutation for ULs, because CDS position c130 and c131present at codon 44 that have necleotide change G>A, T, C at c130 and c131 have necleotide change G>A and C. We also find somenovel somatic mutations<span><span> oncodon 36 (T > C), 38 (G>T) of exon-2 and 88 (G>C) of intron-2. No mutations were detected in uterine myometrium samples. Our computational analysis suggests that change in Med12c .131 G>A leads to single substitution of amino acid [Glycine (G) to </span>Aspartate<span> (D)] which has a pathogenic and lethal impact and may cause instability of MED12 protein. Further, analysis of extracellular matrix (ECM) component (MMP-2 & 9, COL4A2 and α-SMA) mRNA and protein expression levels in the set of ULs having MED12 mutation showed significantly higher expression of MMP-9 and α-SMA.</span></span></p></div><div><h3>Conclusion(s)</h3><p>The findings of present study suggest that missense variation in codon 44 of MED12 gene lead to the genesis of leiomyoma’s through over-expression of MMP-9 of ECM pathway which could be therapeutically targeted for non-surgical management of ULs.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"828 ","pages":"Article 111839"},"PeriodicalIF":2.3,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135665048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1016/j.mrfmmm.2023.111840
C.F.M. Menck , R.S. Galhardo , A. Quinet
Human xeroderma pigmentosum variant (XP-V) patients are mutated in the POLH gene, responsible for encoding the translesion synthesis (TLS) DNA polymerase eta (Pol eta). These patients suffer from a high frequency of skin tumors. Despite several decades of research, studies on Pol eta still offer an intriguing paradox: How does this error-prone polymerase suppress mutations? This review examines recent evidence suggesting that cyclobutane pyrimidine dimers (CPDs) are instructional for Pol eta. Consequently, it can accurately replicate these lesions, and the mutagenic effects induced by UV radiation stem from the deamination of C-containing CPDs. In this model, the deamination of C (forming a U) within CPDs leads to the correct insertion of an A opposite to the deaminated C (or U)-containing dimers. This intricate process results in C>T transitions, which represent the most prevalent mutations detected in skin cancers. Finally, the delayed replication in XP-V cells amplifies the process of C-deamination in CPDs and increases the burden of C>T mutations prevalent in XP-V tumors through the activity of backup TLS polymerases.
{"title":"The accurate bypass of pyrimidine dimers by DNA polymerase eta contributes to ultraviolet-induced mutagenesis","authors":"C.F.M. Menck , R.S. Galhardo , A. Quinet","doi":"10.1016/j.mrfmmm.2023.111840","DOIUrl":"10.1016/j.mrfmmm.2023.111840","url":null,"abstract":"<div><p><span>Human xeroderma pigmentosum variant (XP-V) patients are mutated in the </span><em>POLH</em><span><span> gene, responsible for encoding the translesion synthesis (TLS) DNA polymerase eta (Pol eta). These patients suffer from a high frequency of skin tumors. Despite several decades of research, studies on Pol eta still offer an intriguing paradox: How does this error-prone polymerase suppress mutations? This review examines recent evidence suggesting that cyclobutane pyrimidine dimers<span><span> (CPDs) are instructional for Pol eta. Consequently, it can accurately replicate these lesions, and the mutagenic effects induced by </span>UV radiation stem from the </span></span>deamination of C-containing CPDs. In this model, the deamination of C (forming a U) within CPDs leads to the correct insertion of an A opposite to the deaminated C (or U)-containing dimers. This intricate process results in C>T transitions, which represent the most prevalent mutations detected in skin cancers. Finally, the delayed replication in XP-V cells amplifies the process of C-deamination in CPDs and increases the burden of C>T mutations prevalent in XP-V tumors through the activity of backup TLS polymerases.</span></p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"828 ","pages":"Article 111840"},"PeriodicalIF":2.3,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.mrfmmm.2023.111829
Jianyun Ge , Jie Song , Bo Sun , Xuefeng Yang , Boxiang Du , Xin Sun , Jiejie Zhang , Jianlin Ge , Hong Xie
Background
This study aimed to assess the potential function of Caveolin-1 (CAV-1) in mice with bone cancer pain. Method: Using a mice bone cancer pain model we explored the contribution of CAV-1 expression to bone cancer pain on the 14th day after surgery, mice in the tumor group were randomized and treated with increasing doses of the CAV-1 inhibitor, methyl-beta-cyclodextrin. Pain was assessed by monitoring the number of spontaneous flinches (NSF) and paw withdrawal mechanical threshold (PMWT)mechanical withdrawal threshold (MWT). The localization and expression of CAV-1 in mouse neurons was also determined. Additionally, the protein levels of CAV-1, extracellular signal regulated kinase (ERK) 1/2, cAMP response element-binding protein (CREB) were monitored in mouse spinal cord tissues by western blotting. Results: CAV-1 was remarkably upregulated in the spinal cord of the tumor group on the 4th day after surgery, then downregulated on day 10, and upregulated again at day 14. Such CAV-1 levels were maintained until day 28. In the tumor group, the expression of p-ERK1/2 and p-CERB were upregulated at day 14 after surgery. Intrathecal injection of methyl-beta-cyclodextrin (MCD) downregulated p-ERK1/2 and p-CERB expression which correlated with alleviation of pain. Conclusion: Inhibition of CAV-1 in the spinal cord alleviates bone cancer pain in mice which correlates with inhibition of the ERK/CREB pathway.
{"title":"Downregulated CAV-1 in mouse spinal cord may alleviate bone cancer pain by inhibiting the ERK/CREB pathway","authors":"Jianyun Ge , Jie Song , Bo Sun , Xuefeng Yang , Boxiang Du , Xin Sun , Jiejie Zhang , Jianlin Ge , Hong Xie","doi":"10.1016/j.mrfmmm.2023.111829","DOIUrl":"10.1016/j.mrfmmm.2023.111829","url":null,"abstract":"<div><h3>Background</h3><p><span>This study aimed to assess the potential function of Caveolin-1 (CAV-1) in mice with bone cancer pain. Method: Using a mice bone cancer pain model we explored the contribution of CAV-1 expression to bone cancer pain on the 14th day after surgery, mice in the tumor group were randomized and treated with increasing doses of the CAV-1 inhibitor, methyl-beta-cyclodextrin. Pain was assessed by monitoring the number of spontaneous flinches (NSF) and paw withdrawal mechanical threshold (PMWT)mechanical withdrawal threshold (MWT). The localization and expression of CAV-1 in mouse neurons was also determined. Additionally, the protein levels of CAV-1, extracellular signal regulated kinase<span> (ERK) 1/2, cAMP response element-binding protein (CREB) were monitored in mouse spinal cord tissues by western blotting. Results: CAV-1 was remarkably upregulated in the spinal cord of the tumor group on the 4th day after surgery, then downregulated on day 10, and upregulated again at day 14. Such CAV-1 levels were maintained until day 28. In the tumor group, the expression of p-ERK1/2 and p-CERB were upregulated at day 14 after surgery. </span></span>Intrathecal injection of methyl-beta-cyclodextrin (MCD) downregulated p-ERK1/2 and p-CERB expression which correlated with alleviation of pain. Conclusion: Inhibition of CAV-1 in the spinal cord alleviates bone cancer pain in mice which correlates with inhibition of the ERK/CREB pathway.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"827 ","pages":"Article 111829"},"PeriodicalIF":2.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9758250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The pathogenesis of obesity and related comorbidities has long been associated with oxidative stress. The excess of adipose tissue contributes to the production of free radicals that sustain both a local and a systemic chronic inflammatory state, whereas its reduction can bring to an improvement in inflammation and oxidative stress. In our work, using the fluorescent lipid probe BODIPY® 581/591 C11 and the γH2AX foci assay, a well-known marker of DNA double strand breaks (DSB), we evaluated the extent of cell membrane oxidation and DNA damage in peripheral blood lymphocytes of normal weight (NW) controls and obese patients sampled before and after bariatric surgery. Compared to NW controls, we observed a marked increase in both the frequencies of oxidized cells or nuclei exhibiting phosphorylation of histone H2AX in preoperatory obese patients. After bariatric surgery, obese patients, resampled over one-year follow-up, improved oxidative damage and reduced the presence of DSB. In conclusion, the present study highlights the importance for obese patients undergoing bariatric surgery to also monitor these molecular markers during their postoperative follow-up.
{"title":"Oxidative and DNA damage in obese patients undergoing bariatric surgery: A one-year follow-up study","authors":"Anna Chiaramonte , Serena Testi , Caterina Pelosini , Consuelo Micheli , Aurora Falaschi , Giovanni Ceccarini , Ferruccio Santini , Roberto Scarpato","doi":"10.1016/j.mrfmmm.2023.111827","DOIUrl":"10.1016/j.mrfmmm.2023.111827","url":null,"abstract":"<div><p>The pathogenesis of obesity and related comorbidities has long been associated with oxidative stress. The excess of adipose tissue contributes to the production of free radicals that sustain both a local and a systemic chronic inflammatory state, whereas its reduction can bring to an improvement in inflammation and oxidative stress. In our work, using the fluorescent lipid probe BODIPY® 581/591 C<sub>11</sub> and the γH2AX foci assay, a well-known marker of DNA double strand breaks (DSB), we evaluated the extent of cell membrane oxidation and DNA damage in peripheral blood lymphocytes of normal weight (NW) controls and obese patients sampled before and after bariatric surgery. Compared to NW controls, we observed a marked increase in both the frequencies of oxidized cells or nuclei exhibiting phosphorylation of histone H2AX in preoperatory obese patients. After bariatric surgery, obese patients, resampled over one-year follow-up, improved oxidative damage and reduced the presence of DSB. In conclusion, the present study highlights the importance for obese patients undergoing bariatric surgery to also monitor these molecular markers during their postoperative follow-up.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"827 ","pages":"Article 111827"},"PeriodicalIF":2.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9678582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.1016/j.mrfmmm.2023.111836
Declan Fahey , James O’Brien , Joanne Pagnon , Simone Page , Richard Wilson , Nic Slamen , Louise Roddam , Mark Ambrose
We investigated the role(s) of the damage-inducible SOS response dinB and imuBC gene products in the generation of ciprofloxacin-resistance mutations in the important human opportunistic bacterial pathogen, Pseudomonas aeruginosa. We found that the overall numbers of ciprofloxacin resistant (CipR) mutants able to be recovered under conditions of selection were significantly reduced when the bacterial cells concerned carried a defective dinB gene, but could be elevated to levels approaching wild-type when these cells were supplied with the dinB gene on a plasmid vector; in turn, firmly establishing a role for the dinB gene product, error-prone DNA polymerase IV, in the generation of CipR mutations in P. aeruginosa. Further, we report that products of the SOS-regulated imuABC gene cassette of this organism, ImuB and the error-prone ImuC DNA polymerase, are also involved in generating CipR mutations in this organism, since the yields of CipR mutations were substantially decreased in imuB- or imuC-defective cells compared to wild-type. Intriguingly, we found that the mutability of a dinB-defective strain could not be rescued by overexpression of the imuBC genes. And similarly, overexpression of the dinB gene either only modestly or else failed to restore CipR mutations in imuB- or imuC-defective cells, respectively. Combined, these results indicated that the products of the dinB and imuBC genes were acting in the same pathway leading to the generation of CipR mutations in P. aeruginosa. In addition, we provide evidence indicating that the general stress response sigma factor σs, RpoS, is required for mutagenesis in this organism and is in part at least modulating the dinB (DNA polymerase IV)-dependent mutational process. Altogether, these data provide further insight into the complexity and multifaceted control of the mutational mechanism(s) contributing to the generation of ciprofloxacin-resistance mutations in P. aeruginosa.
{"title":"DinB (DNA polymerase IV), ImuBC and RpoS contribute to the generation of ciprofloxacin-resistance mutations in Pseudomonas aeruginosa","authors":"Declan Fahey , James O’Brien , Joanne Pagnon , Simone Page , Richard Wilson , Nic Slamen , Louise Roddam , Mark Ambrose","doi":"10.1016/j.mrfmmm.2023.111836","DOIUrl":"10.1016/j.mrfmmm.2023.111836","url":null,"abstract":"<div><p>We investigated the role(s) of the damage-inducible SOS response <em>dinB</em> and <em>imuBC</em> gene products in the generation of ciprofloxacin-resistance mutations in the important human opportunistic bacterial pathogen, <em>Pseudomonas aeruginosa</em>. We found that the overall numbers of ciprofloxacin resistant (Cip<sup>R</sup>) mutants able to be recovered under conditions of selection were significantly reduced when the bacterial cells concerned carried a defective <em>dinB</em> gene, but could be elevated to levels approaching wild-type when these cells were supplied with the <em>dinB</em> gene on a plasmid vector; in turn, firmly establishing a role for the <em>dinB</em> gene product, error-prone DNA polymerase IV, in the generation of Cip<sup>R</sup> mutations in <em>P</em>. <em>aeruginosa</em>. Further, we report that products of the SOS-regulated <em>imuABC</em> gene cassette of this organism, ImuB and the error-prone ImuC DNA polymerase, are also involved in generating Cip<sup>R</sup> mutations in this organism, since the yields of Cip<sup>R</sup> mutations were substantially decreased in <em>imuB</em>- or <em>imuC</em>-defective cells compared to wild-type. Intriguingly, we found that the mutability of a <em>dinB</em>-defective strain could not be rescued by overexpression of the <em>imuBC</em> genes. And similarly, overexpression of the <em>dinB</em> gene either only modestly or else failed to restore Cip<sup>R</sup> mutations in <em>imuB</em>- or <em>imuC</em>-defective cells, respectively. Combined, these results indicated that the products of the <em>dinB</em> and <em>imuBC</em> genes were acting in the same pathway leading to the generation of Cip<sup>R</sup> mutations in <em>P</em>. <em>aeruginosa</em>. In addition, we provide evidence indicating that the general stress response sigma factor σ<sup>s</sup>, RpoS, is required for mutagenesis in this organism and is in part at least modulating the <em>dinB</em> (DNA polymerase IV)-dependent mutational process. Altogether, these data provide further insight into the complexity and multifaceted control of the mutational mechanism(s) contributing to the generation of ciprofloxacin-resistance mutations in <em>P</em>. <em>aeruginosa</em>.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"827 ","pages":"Article 111836"},"PeriodicalIF":2.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10070300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hereditary cancer syndromes constitute 5–10% of all cancers. The development of next-generation sequencing technologies has made it possible to examine many hereditary cancer syndrome-causing genes in a single panel. This study's goal was to describe the prevalence and the variant spectrum using NGS in individuals who were thought to have a hereditary predisposition for cancer.
Material and method
Analysis was performed for 1254 who were thought to have a familial predisposition for cancer. We excluded 46 patients who were carrying BRCA1/2 variants in this study, for focusing on the rare gene mutations. Sequencing was performed using the Sophia Hereditary Cancer Solution v1.1 Panel and the Qiagen Large Hereditary Cancer Panel. The Illumina MiSeq system was used for the sequencing procedure. The software used for the data analyses was Sophia DDM and QIAGEN Clinical Insight (QCITM) Analyze. The resulting genomic changes were classified according to the current guidelines of ACMG/AMP.
Results
Pathogenic/likely pathogenic variants were detected in 172 (13.7%) of 1254 patients. After excluding the 46 BRCA1/2-positive patients, among the remaining 126 patients; there were 60 (4.8%) breast cancer, 33 (2.6%) colorectal cancer, 9 (0.7%) ovarian cancer, 5 (0.4%) endometrium cancer, 5 (0.4%) stomach cancer, 3 (0.2%) prostate cancer patients. The most altered genes were MUTYH in 27 (2.1%) patients, MMR genes (MLH1, MSH6, MSH, MSH2, PMS2 and EPCAM) in 26 (2%) patients, and ATM in 25 (2%) patients. We also examined the genotype-phenotype correlation in rare variants. Additionally, we identified 11 novel variations.
Conclusion
This study provided significant information regarding rare variants observed in the Turkish population because it was carried out with a large patient group. Personalized treatment options and genetic counseling for the patients are therefore made facilitated.
{"title":"Uncommon variants detected via hereditary cancer panel and suggestions for genetic counseling","authors":"Zeynep Özdemir , Ezgi Çevik , Ömür Berna Çakmak Öksüzoğlu , Mutlu Doğan , Öztürk Ateş , Ece Esin , İrem Bilgetekin , Umut Demirci , Çağlar Köseoğlu , Alper Topal , Nuri Karadurmuş , Haktan Bağış Erdem , Taha Bahsi","doi":"10.1016/j.mrfmmm.2023.111831","DOIUrl":"10.1016/j.mrfmmm.2023.111831","url":null,"abstract":"<div><h3>Objective</h3><p>Hereditary cancer syndromes<span> constitute 5–10% of all cancers. The development of next-generation sequencing technologies has made it possible to examine many hereditary cancer syndrome-causing genes in a single panel. This study's goal was to describe the prevalence and the variant spectrum using NGS in individuals who were thought to have a hereditary predisposition for cancer.</span></p></div><div><h3>Material and method</h3><p>Analysis was performed for 1254 who were thought to have a familial predisposition for cancer. We excluded 46 patients who were carrying <em>BRCA1/2</em><span><span> variants in this study, for focusing on the rare gene mutations. Sequencing was performed using the </span>Sophia<span> Hereditary Cancer Solution v1.1 Panel and the Qiagen Large Hereditary Cancer Panel. The Illumina MiSeq system was used for the sequencing procedure. The software used for the data analyses was Sophia DDM and QIAGEN Clinical Insight (QCITM) Analyze. The resulting genomic changes were classified according to the current guidelines of ACMG/AMP.</span></span></p></div><div><h3>Results</h3><p>Pathogenic/likely pathogenic variants were detected in 172 (13.7%) of 1254 patients. After excluding the 46 <em>BRCA1/2</em><span><span><span>-positive patients, among the remaining 126 patients; there were 60 (4.8%) breast cancer, 33 (2.6%) colorectal cancer, 9 (0.7%) </span>ovarian cancer<span>, 5 (0.4%) endometrium cancer, 5 (0.4%) stomach cancer, 3 (0.2%) </span></span>prostate cancer patients. The most altered genes were </span><span><em>MUTYH</em></span> in 27 (2.1%) patients, MMR genes (<span><span><span><span><em>MLH1</em><em>, </em></span><em>MSH6</em><em>, </em></span><em>MSH</em><span><em>, </em><em>MSH2</em><em>, </em></span></span><em>PMS2</em><em> and EPCAM</em></span>) in 26 (2%) patients, and <em>ATM</em> in 25 (2%) patients. We also examined the genotype-phenotype correlation in rare variants. Additionally, we identified 11 novel variations.</p></div><div><h3>Conclusion</h3><p>This study provided significant information regarding rare variants observed in the Turkish population because it was carried out with a large patient group. Personalized treatment options and genetic counseling for the patients are therefore made facilitated.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"827 ","pages":"Article 111831"},"PeriodicalIF":2.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9769666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}