A reduction in fingertip forces during a visually occluded isometric task is called unintentional drift. In this study, unintentional drift was studied for two conditions, with and without "epilogue." We define epilogue as the posttrial visual feedback in which the outcome of the just-concluded trial is shown before the start of the next trial. For this study, 14 healthy participants were recruited and were instructed to produce fingertip forces to match a target line at 15% maximum voluntary contraction. The results showed a significant reduction in unintentional drift in the epilogue condition. This reduction is probably due to the difference in the shift in λ, the threshold of the tonic stretch reflex, the hypothetical control variable that the central controller can set.
Humans use their peripheral vision during locomotion to perceive an approaching obstacle in their path, while also focusing central gaze on steps ahead of them. However, certain physiological and psychological factors may change this strategy, such as when a walker is physically fatigued. In this study, 21 healthy participants walked through a dark room while wearing eye tracking glasses before and following intense exercise. Obstacles were placed in random locations along their path and became illuminated when participants approached them. Results indicate that, when fatigued, participants had altered spatial gaze strategies, including more frequent use of central gaze to perceive obstacles and an increased gaze angular displacement. However, there were no changes in temporal gaze strategies following exercise. These findings reveal how physical fatigue alters one's visual perception of their environment during locomotion, and may partially explain why people are at greater risk of trips and falls while fatigued.
In this study, the effect of carrying combat equipment and a backpack on balance between men and women was analyzed by simulating a jump out of an armored fighting vehicle, together with the influence of body composition variables. Thirty-seven men and eight women participated in this study. Three landings were performed by simulating a jump from a wheeled armored vehicle carrying no load, carrying the combat equipment and backpack condition. A force plate was used to measure the amplitude and velocity displacement of the center of pressure and the stabilization time. A significant load effect was found on the total velocity and medial-lateral velocity. The weight of the combat equipment and the body composition variables did not correlate with the balance variables. Male and female soldiers showed similar body balance while carrying military combat equipment.
Efficient maintenance of posture depends on the ability of humans to predict consequences of a perturbation applied to their body. The purpose of this scoping review was to map the literature on the role of predictability of a body perturbation in control of posture. A comprehensive search of MEDLINE, EMBASE, and CINAHL databases was conducted. Inclusion criteria were studies of adults participating in experiments involving body perturbations, reported outcomes of posture and balance control, and studies published in English. Sixty-three studies were selected. The reviewed information resources included the availability of sensory information and the exposure to perturbations in different sequences of perturbation magnitudes or directions. This review revealed that people use explicit and implicit information resources for the prediction of perturbations. Explicit information consists of sensory information related to perturbation properties and timing, whereas implicit information involves learning from repetitive exposures to perturbations of the same properties.
Best practice in skill acquisition has been informed by motor control theories. The main aim of this study is to screen existing literature on a relatively novel theory, Optimal Feedback Control Theory (OFCT), and to assess how OFCT concepts can be applied in sports and motor learning research. Based on 51 included studies with on average a high methodological quality, we found that different types of training seem to appeal to different control processes within OFCT. The minimum intervention principle (founded in OFCT) was used in many of the reviewed studies, and further investigation might lead to further improvements in sport skill acquisition. However, considering the homogenous nature of the tasks included in the reviewed studies, these ideas and their generalizability should be tested in future studies.
Human rolling, as turning in bed, is a fundamental activity of daily living. A quantitative analysis of rolling could help identify the neuromusculoskeletal disorders that prohibit rolling and develop interventions for individuals who cannot roll. This study sought to determine whether crossing the arms over the chest would alter fundamental coordination patterns when rolling. Kinematic data were collected from 24 subjects as they rolled with and without their arms crossed over their chest. Crossing the arms decreased the mean peak angular velocities of the shoulders (p = .001) and pelvis (p = .013) and influenced the mean duration of the roll (p = .057). There were no fundamental differences in shoulder and pelvis coordination when rolling with the arms crossed over the chest, implying that the arms may not have a major role in rolling.
The present study explores variations in the degree of automaticity and predictability of cyclical arm and leg movements. Twenty healthy adults were asked to walk on a treadmill at a lower-than-preferred speed, their preferred speed, and at a higher-than-preferred speed. In a separate, repetitive punching task, the three walking frequencies were used to cue the target pace of the cyclical arm movements. Movements of the arms, legs, and trunk were digitized with inertial sensors. Whereas absolute slope values (|β|) of the linear fit to the power spectrum of the digitized movements (p < .001, η2 = .676) were systematically smaller in treadmill walking than in repetitive punching, sample entropy measures (p < .001, η2 = .570) were larger reflecting the former task being more automated but also less predictable than the latter task. In both tasks, increased speeds enhanced automatized control (p < .001, η2 = .475) but reduced movement predictability (p = .008, η2 = .225). The latter findings are potentially relevant when evaluating effects of task demand changes in clinical contexts.