Pub Date : 2016-07-29DOI: 10.1186/s12867-016-0070-z
Yi Jin, Fang Zhang, Zhenfa Ma, Zhuqing Ren
Nonsense-mediated mRNA decay (NMD) is a RNA quality surveillance system for eukaryotes. It prevents cells from generating deleterious truncated proteins by degrading abnormal mRNAs that harbor premature termination codon (PTC). However, little is known about the molecular regulation mechanism underlying the inhibition of NMD by microRNAs.
The present study demonstrated that miR-433 was involved in NMD pathway via negatively regulating SMG5. We provided evidence that (1) overexpression of miR-433 significantly suppressed the expression of SMG5 (P?<?0.05); (2) Both mRNA and protein expression levels of TBL2 and GADD45B, substrates of NMD, were increased when SMG5 was suppressed by siRNA; (3) Expression of SMG5, TBL2 and GADD45B were significantly increased by miR-433 inhibitor (P?<?0.05). These results together illustrated that miR-433 regulated NMD by targeting SMG5 mRNA.
Our study highlights that miR-433 represses nonsense mediated mRNA decay. The miR-433 targets 3’-UTR of SMG5 and represses the expression of SMG5, whereas NMD activity is decreased when SMG5 is decreased. This discovery provides evidence for microRNA/NMD regulatory mechanism.
{"title":"MicroRNA 433 regulates nonsense-mediated mRNA decay by targeting SMG5 mRNA","authors":"Yi Jin, Fang Zhang, Zhenfa Ma, Zhuqing Ren","doi":"10.1186/s12867-016-0070-z","DOIUrl":"https://doi.org/10.1186/s12867-016-0070-z","url":null,"abstract":"<p>Nonsense-mediated mRNA decay (NMD) is a RNA quality surveillance system for eukaryotes. It prevents cells from generating deleterious truncated proteins by degrading abnormal mRNAs that harbor premature termination codon (PTC). However, little is known about the molecular regulation mechanism underlying the inhibition of NMD by microRNAs.</p><p>The present study demonstrated that miR-433 was involved in NMD pathway via negatively regulating <i>SMG5</i>. We provided evidence that (1) overexpression of miR-433 significantly suppressed the expression of <i>SMG5</i> (P?<?0.05); (2) Both mRNA and protein expression levels of <i>TBL2</i> and <i>GADD45B</i>, substrates of NMD, were increased when <i>SMG5</i> was suppressed by siRNA; (3) Expression of <i>SMG5</i>, <i>TBL2</i> and <i>GADD45B</i> were significantly increased by miR-433 inhibitor (P?<?0.05). These results together illustrated that miR-433 regulated NMD by targeting <i>SMG5</i> mRNA.</p><p>Our study highlights that miR-433 represses nonsense mediated mRNA decay. The miR-433 targets 3’-UTR of <i>SMG5</i> and represses the expression of <i>SMG5</i>, whereas NMD activity is decreased when SMG5 is decreased. This discovery provides evidence for microRNA/NMD regulatory mechanism.</p>","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"17 1","pages":""},"PeriodicalIF":2.946,"publicationDate":"2016-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-016-0070-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5117812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-07-20DOI: 10.1186/s12867-016-0069-5
Tianle Xu, Xiangzhen Shen, Hans-Martin Seyfert
Stearoyl-CoA desaturase 1 (SCD1) desaturates long chain fatty acids and is therefore a key enzyme in fat catabolism. Its synthesis is downregulated in liver during illnesses caused by high levels of circulating lipopolysaccharide (LPS). SCD1 expression is known to be stimulated under adipogenic conditions through a variety of transcription factors, notably SREBP1 and C/EBPα and ?β. However, mechanisms downregulating SCD1 expression during illness related reprograming of the metabolism were unknown. Escherichia coli elicited mastitis is an example of such a condition and was found to downregulates milk and milk fat synthesis. This is in part mediated through epigenetic mechanisms. We analyzed here mechanism controlling SCD1 expression in livers and udders from cows suffering from experimentally induced E. coli mastitis.
We validated with RT-qPCR that SCD1 expression was reduced in these organs of the experimental cows. They also featured decreased levels of mRNAs encoding SREBP1a but increased levels for C/EBP α and ?β. Chromatin accessibility PCR (CHART) revealed that downregulation of SCD1 expression in liver was not caused by tighter chromatin compaction of the SCD1 promoter. Reporter gene analyses showed in liver (HepG2) and mammary epithelial (MAC-T) model cells that overexpression of SREBP1a expectedly activated the promoter, while unexpectedly C/EBPα and ?β strongly quenched the promoter activity. Abrogation of two from among of the three C/EBP DNA-binding motifs of the promoter revealed that C/EBPα acts in cis but C/EBPβ in trans. Overexpressing truncated C/EBPα or ?β factors lacking their repressive domains confirmed in both model cells the direct action of C/EBPα, but not of C/EBPβ on the promoter.
We found no evidence that epigenetic mechanism remodeling the chromatin compaction of the SCD1 promoter would contribute to downregulate SCD1 expression during infection. Instead, our data show for the first time that C/EBP factors may repress SCD1 expression in liver and udder rather than stimulating as it was previously shown in adipocytes. This cell type specific dual and opposite function of C/EBP factors for regulating SCD1 expression was previously unknown. Infection related activation of their expression combined with downregulated expression of SREBP1a explains reduced SCD1 expression in liver and udder during acute mastitis.
{"title":"Stearoyl-CoA desaturase 1 expression is downregulated in liver and udder during E. coli mastitis through enhanced expression of repressive C/EBP factors and reduced expression of the inducer SREBP1A","authors":"Tianle Xu, Xiangzhen Shen, Hans-Martin Seyfert","doi":"10.1186/s12867-016-0069-5","DOIUrl":"https://doi.org/10.1186/s12867-016-0069-5","url":null,"abstract":"<p>Stearoyl-CoA desaturase 1 (SCD1) desaturates long chain fatty acids and is therefore a key enzyme in fat catabolism. Its synthesis is downregulated in liver during illnesses caused by high levels of circulating lipopolysaccharide (LPS). SCD1 expression is known to be stimulated under adipogenic conditions through a variety of transcription factors, notably SREBP1 and C/EBPα and ?β. However, mechanisms downregulating SCD1 expression during illness related reprograming of the metabolism were unknown. <i>Escherichia coli</i> elicited mastitis is an example of such a condition and was found to downregulates milk and milk fat synthesis. This is in part mediated through epigenetic mechanisms. We analyzed here mechanism controlling SCD1 expression in livers and udders from cows suffering from experimentally induced <i>E. coli</i> mastitis.</p><p>We validated with RT-qPCR that SCD1 expression was reduced in these organs of the experimental cows. They also featured decreased levels of mRNAs encoding SREBP1a but increased levels for C/EBP α and ?β. Chromatin accessibility PCR (CHART) revealed that downregulation of SCD1 expression in liver was not caused by tighter chromatin compaction of the SCD1 promoter. Reporter gene analyses showed in liver (HepG2) and mammary epithelial (MAC-T) model cells that overexpression of SREBP1a expectedly activated the promoter, while unexpectedly C/EBPα and ?β strongly quenched the promoter activity. Abrogation of two from among of the three C/EBP DNA-binding motifs of the promoter revealed that C/EBPα acts in <i>cis</i> but C/EBPβ in <i>trans</i>. Overexpressing truncated C/EBPα or ?β factors lacking their repressive domains confirmed in both model cells the direct action of C/EBPα, but not of C/EBPβ on the promoter.</p><p>We found no evidence that epigenetic mechanism remodeling the chromatin compaction of the SCD1 promoter would contribute to downregulate SCD1 expression during infection. Instead, our data show for the first time that C/EBP factors may repress SCD1 expression in liver and udder rather than stimulating as it was previously shown in adipocytes. This cell type specific dual and opposite function of C/EBP factors for regulating SCD1 expression was previously unknown. Infection related activation of their expression combined with downregulated expression of SREBP1a explains reduced SCD1 expression in liver and udder during acute mastitis.</p>","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"17 1","pages":""},"PeriodicalIF":2.946,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-016-0069-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4790993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-14DOI: 10.1186/s12867-016-0066-8
Victoria L. M. Herrera, Martin Steffen, Ann Marie Moran, Glaiza A. Tan, Khristine A. Pasion, Keith Rivera, Darryl J. Pappin, Nelson Ruiz-Opazo
In contrast to rat and mouse databases, the NCBI gene database lists the human dual-endothelin1/VEGFsp receptor (DEspR, formerly Dear) as a unitary transcribed pseudogene due to a stop [TGA]-codon at codon#14 in automated DNA and RNA sequences. However, re-analysis is needed given prior single gene studies detected a tryptophan [TGG]-codon#14 by manual Sanger sequencing, demonstrated DEspR translatability and functionality, and since the demonstration of actual non-translatability through expression studies, the standard-of-excellence for pseudogene designation, has not been performed. Re-analysis must meet UNIPROT criteria for demonstration of a protein’s existence at the highest (protein) level, which a priori, would override DNA- or RNA-based deductions.
To dissect the nucleotide sequence discrepancy, we performed Maxam–Gilbert sequencing and reviewed 727 RNA-seq entries. To comply with the highest level multiple UNIPROT criteria for determining DEspR’s existence, we performed various experiments using multiple anti-DEspR monoclonal antibodies (mAbs) targeting distinct DEspR epitopes with one spanning the contested tryptophan [TGG]-codon#14, assessing: (a) DEspR protein expression, (b) predicted full-length protein size, (c) sequence-predicted protein-specific properties beyond codon#14: receptor glycosylation and internalization, (d) protein-partner interactions, and (e) DEspR functionality via DEspR-inhibition effects.
Maxam–Gilbert sequencing and some RNA-seq entries demonstrate two guanines, hence a tryptophan [TGG]-codon#14 within a compression site spanning an error-prone compression sequence motif. Western blot analysis using anti-DEspR mAbs targeting distinct DEspR epitopes detect the identical glycosylated 17.5?kDa pull-down protein. Decrease in DEspR-protein size after PNGase-F digest demonstrates post-translational glycosylation, concordant with the consensus-glycosylation site beyond codon#14. Like other small single-transmembrane proteins, mass spectrometry analysis of anti-DEspR mAb pull-down proteins do not detect DEspR, but detect DEspR-protein interactions with proteins implicated in intracellular trafficking and cancer. FACS analyses also detect DEspR-protein in different human cancer stem-like cells (CSCs). DEspR-inhibition studies identify DEspR-roles in CSC survival and growth. Live cell imaging detects fluorescently-labeled anti-DEspR mAb targeted-receptor internalization, concordant with the single internalization-recognition sequence also located beyond codon#14.
Data confirm translatability of DEspR, the full-length DEspR protein beyond codon#14, and elucidate DEspR-specific functionality. Along with detection of the tryptophan [TGG]-codon#14 within an error-prone compression site, cumulative data demonstrating DEspR protein existence fulfill multiple UNIPROT criteria, thus refuting its pseudogene designation.
{"title":"Confirmation of translatability and functionality certifies the dual endothelin1/VEGFsp receptor (DEspR) protein","authors":"Victoria L. M. Herrera, Martin Steffen, Ann Marie Moran, Glaiza A. Tan, Khristine A. Pasion, Keith Rivera, Darryl J. Pappin, Nelson Ruiz-Opazo","doi":"10.1186/s12867-016-0066-8","DOIUrl":"https://doi.org/10.1186/s12867-016-0066-8","url":null,"abstract":"<p>In contrast to rat and mouse databases, the NCBI gene database lists the human dual-endothelin1/VEGFsp receptor (DEspR, formerly <i>Dear</i>) as a unitary transcribed pseudogene due to a stop [TGA]-codon at codon#14 in automated DNA and RNA sequences. However, re-analysis is needed given prior single gene studies detected a tryptophan [TGG]-codon#14 by manual Sanger sequencing, demonstrated DEspR translatability and functionality, and since the demonstration of actual non-translatability through expression studies, the standard-of-excellence for pseudogene designation, has not been performed. Re-analysis must meet UNIPROT criteria for demonstration of a protein’s existence at the highest (protein) level, which a priori, would override DNA- or RNA-based deductions.</p><p>To dissect the nucleotide sequence discrepancy, we performed Maxam–Gilbert sequencing and reviewed 727 RNA-seq entries. To comply with the highest level multiple UNIPROT criteria for determining DEspR’s existence, we performed various experiments using multiple anti-DEspR monoclonal antibodies (mAbs) targeting distinct DEspR epitopes with one spanning the contested tryptophan [TGG]-codon#14, assessing: (a) DEspR protein expression, (b) predicted full-length protein size, (c) sequence-predicted protein-specific properties beyond codon#14: receptor glycosylation and internalization, (d) protein-partner interactions, and (e) DEspR functionality via DEspR-inhibition effects.</p><p>Maxam–Gilbert sequencing and some RNA-seq entries demonstrate two guanines, hence a tryptophan [TGG]-codon#14 within a compression site spanning an error-prone compression sequence motif. Western blot analysis using anti-DEspR mAbs targeting distinct DEspR epitopes detect the identical glycosylated 17.5?kDa pull-down protein. Decrease in DEspR-protein size after PNGase-F digest demonstrates post-translational glycosylation, concordant with the consensus-glycosylation site beyond codon#14. Like other small single-transmembrane proteins, mass spectrometry analysis of anti-DEspR mAb pull-down proteins do not detect DEspR, but detect DEspR-protein interactions with proteins implicated in intracellular trafficking and cancer. FACS analyses also detect DEspR-protein in different human cancer stem-like cells (CSCs). DEspR-inhibition studies identify DEspR-roles in CSC survival and growth. Live cell imaging detects fluorescently-labeled anti-DEspR mAb targeted-receptor internalization, concordant with the single internalization-recognition sequence also located beyond codon#14.</p><p>Data confirm translatability of DEspR, the full-length DEspR protein beyond codon#14, and elucidate DEspR-specific functionality. Along with detection of the tryptophan [TGG]-codon#14 within an error-prone compression site, cumulative data demonstrating DEspR protein existence fulfill multiple UNIPROT criteria, thus refuting its pseudogene designation.</p>","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"17 1","pages":""},"PeriodicalIF":2.946,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-016-0066-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4870908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-06-08DOI: 10.1186/s12867-016-0068-6
Václav Brázda, Lucia Hároníková, Jack C. C. Liao, Helena Fridrichová, Eva B. Jagelská
The breast and ovarian cancer susceptibility gene BRCA1 encodes a multifunctional tumor suppressor protein BRCA1, which is involved in regulating cellular processes such as cell cycle, transcription, DNA repair, DNA damage response and chromatin remodeling. BRCA1 protein, located primarily in cell nuclei, interacts with multiple proteins and various DNA targets. It has been demonstrated that BRCA1 protein binds to damaged DNA and plays a role in the transcriptional regulation of downstream target genes. As a key protein in the repair of DNA double-strand breaks, the BRCA1-DNA binding properties, however, have not been reported in detail.
In this study, we provided detailed analyses of BRCA1 protein (DNA-binding domain, amino acid residues 444–1057) binding to topologically constrained non-B DNA structures (e.g. cruciform, triplex and quadruplex). Using electrophoretic retardation assay, atomic force microscopy and DNA binding competition assay, we showed the greatest preference of the BRCA1 DNA-binding domain to cruciform structure, followed by DNA quadruplex, with the weakest affinity to double stranded B-DNA and single stranded DNA. While preference of the BRCA1 protein to cruciform structures has been reported previously, our observations demonstrated for the first time a preferential binding of the BRCA1 protein also to triplex and quadruplex DNAs, including its visualization by atomic force microscopy.
Our discovery highlights a direct BRCA1 protein interaction with DNA. When compared to double stranded DNA, such a strong preference of the BRCA1 protein to cruciform and quadruplex structures suggests its importance in biology and may thus shed insight into the role of these interactions in cell regulation and maintenance.
{"title":"Strong preference of BRCA1 protein to topologically constrained non-B DNA structures","authors":"Václav Brázda, Lucia Hároníková, Jack C. C. Liao, Helena Fridrichová, Eva B. Jagelská","doi":"10.1186/s12867-016-0068-6","DOIUrl":"https://doi.org/10.1186/s12867-016-0068-6","url":null,"abstract":"<p>The breast and ovarian cancer susceptibility gene <i>BRCA1</i> encodes a multifunctional tumor suppressor protein BRCA1, which is involved in regulating cellular processes such as cell cycle, transcription, DNA repair, DNA damage response and chromatin remodeling. BRCA1 protein, located primarily in cell nuclei, interacts with multiple proteins and various DNA targets. It has been demonstrated that BRCA1 protein binds to damaged DNA and plays a role in the transcriptional regulation of downstream target genes. As a key protein in the repair of DNA double-strand breaks, the BRCA1-DNA binding properties, however, have not been reported in detail.</p><p>In this study, we provided detailed analyses of BRCA1 protein (DNA-binding domain, amino acid residues 444–1057) binding to topologically constrained non-B DNA structures (e.g. cruciform, triplex and quadruplex). Using electrophoretic retardation assay, atomic force microscopy and DNA binding competition assay, we showed the greatest preference of the BRCA1 DNA-binding domain to cruciform structure, followed by DNA quadruplex, with the weakest affinity to double stranded B-DNA and single stranded DNA. While preference of the BRCA1 protein to cruciform structures has been reported previously, our observations demonstrated for the first time a preferential binding of the BRCA1 protein also to triplex and quadruplex DNAs, including its visualization by atomic force microscopy.</p><p>Our discovery highlights a direct BRCA1 protein interaction with DNA. When compared to double stranded DNA, such a strong preference of the BRCA1 protein to cruciform and quadruplex structures suggests its importance in biology and may thus shed insight into the role of these interactions in cell regulation and maintenance.</p>","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"17 1","pages":""},"PeriodicalIF":2.946,"publicationDate":"2016-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-016-0068-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4343678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-05-24DOI: 10.1186/s12867-016-0062-z
Montamas Suntravat, Néstor L. Uzcategui, Chairat Atphaisit, Thomas J. Helmke, Sara E. Lucena, Elda E. Sánchez, Alexis Rodríguez-Acosta
{"title":"Erratum to: Gene expression profiling of the venom gland from the Venezuelan mapanare (Bothrops colombiensis) using expressed sequence tags (ESTs)","authors":"Montamas Suntravat, Néstor L. Uzcategui, Chairat Atphaisit, Thomas J. Helmke, Sara E. Lucena, Elda E. Sánchez, Alexis Rodríguez-Acosta","doi":"10.1186/s12867-016-0062-z","DOIUrl":"https://doi.org/10.1186/s12867-016-0062-z","url":null,"abstract":"","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"17 1","pages":""},"PeriodicalIF":2.946,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-016-0062-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4943007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-05-10DOI: 10.1186/s12867-016-0065-9
Na Cao, Jia-Kai Li, Yu-Qing Rao, Huijuan Liu, Ji Wu, Baojie Li, Peiquan Zhao, Li Zeng, Jing Li
Cells respond to DNA damage by activating the phosphatidylinositol-3 kinase-related kinases, p53 and other pathways to promote cell cycle arrest, apoptosis, and/or DNA repair. Here we report that protein palmitoylation, a modification carried out by protein acyltransferases with zinc-finger and Asp-His-His-Cys domains (zDHHC), is required for proper DNA damage responses.
Inhibition of protein palmitoylation compromised DNA damage-induced activation of Atm, induction and activation of p53, cell cycle arrest at G2/M phase, and DNA damage foci assembly/disassembly in primary mouse embryonic fibroblasts. Furthermore, knockout of zDHHC16, a palmitoyltransferase gene identified as an interacting protein for c-Abl, a non-receptor tyrosine kinase involved in DNA damage response, reproduced most of the defects in DNA damage responses produced by the inhibition of protein palmitoylation.
Our results revealed critical roles for protein palmitoylation and palmitoyltransferase zDHHC16 in early stages of DNA damage responses and in the regulation of Atm activation.
{"title":"A potential role for protein palmitoylation and zDHHC16 in DNA damage response","authors":"Na Cao, Jia-Kai Li, Yu-Qing Rao, Huijuan Liu, Ji Wu, Baojie Li, Peiquan Zhao, Li Zeng, Jing Li","doi":"10.1186/s12867-016-0065-9","DOIUrl":"https://doi.org/10.1186/s12867-016-0065-9","url":null,"abstract":"<p>Cells respond to DNA damage by activating the phosphatidylinositol-3 kinase-related kinases, p53 and other pathways to promote cell cycle arrest, apoptosis, and/or DNA repair. Here we report that protein palmitoylation, a modification carried out by protein acyltransferases with zinc-finger and Asp-His-His-Cys domains (zDHHC), is required for proper DNA damage responses.</p><p>Inhibition of protein palmitoylation compromised DNA damage-induced activation of Atm, induction and activation of p53, cell cycle arrest at G2/M phase, and DNA damage foci assembly/disassembly in primary mouse embryonic fibroblasts. Furthermore, knockout of zDHHC16, a palmitoyltransferase gene identified as an interacting protein for c-Abl, a non-receptor tyrosine kinase involved in DNA damage response, reproduced most of the defects in DNA damage responses produced by the inhibition of protein palmitoylation.</p><p>Our results revealed critical roles for protein palmitoylation and palmitoyltransferase zDHHC16 in early stages of DNA damage responses and in the regulation of Atm activation.</p>","PeriodicalId":497,"journal":{"name":"BMC Molecular Biology","volume":"17 1","pages":""},"PeriodicalIF":2.946,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12867-016-0065-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4431090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-04-18DOI: 10.1186/s12867-016-0064-x
Malte P. Bartram, Elena Amendola, Thomas Benzing, Bernhard Schermer, Gabriella de Vita, Roman-Ulrich Müller
Non-coding RNAs have gained increasing attention during the last decade. The first large group of non-coding RNAs to be characterized systematically starting at the beginning of the 21st century were small oligonucleotides—the so-called microRNAs (miRNAs). By now we have learnt that microRNAs are indispensable for most biological processes including organogenesis and maintenance of organ structure and function. The role of microRNAs has been studied extensively in the development of a number of organs, so far most studies focussed on e.g. the heart or the brain whilst the role of microRNAs in the development and maintenance of complex epithelial organs is less well understood. Furthermore most analyses regarding microRNA function in epithelial organs employed conditional knockout mouse models of the RNAse III Dicer to abrogate microRNA biogenesis. However, there is increasing evidence for Dicer to have multiple functions independent from microRNA maturation. Therefore Dicer independent models are needed to gain further insight into the complex biology of miRNA dependent processes.
Here we analyze the contribution of microRNA-dependent transcriptional control in Pax8-expressing epithelial cells. Pax8 is a transcription factor that is crucial to the development of epithelial organs. The miRNA machinery was disrupted by crossing conditional DiGeorge syndrome critical region 8(Dgcr8) fl/fl mice to Pax8Cre mice. The Dgcr8/Drosha complex processes pri-miRNAs in the nucleus before they are exported as pre-miRNAs for further maturation by Dicer in the cytoplasm. Dgcr8?fl/fl; Pax8Cre+?knockout mice died prematurely, developed massive hypothyroidism and end stage renal disease due to a loss of miRNAs in Pax8 expressing tissue.