首页 > 最新文献

Journal of the Australian Mathematical Society最新文献

英文 中文
RADU GROUPS ACTING ON TREES ARE CCR 作用于树木的雷达群是 ccr
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-03-06 DOI: 10.1017/s1446788723000381
LANCELOT SEMAL

We classify the irreducible unitary representations of closed simple groups of automorphisms of trees acting $2$-transitively on the boundary and whose local action at every vertex contains the alternating group. As an application, we confirm Claudio Nebbia’s CCR conjecture on trees for $(d_0,d_1)$-semi-regular trees such that $d_0,d_1in Theta $, where $Theta $ is an asymptotically dense set of positive integers.

我们对在边界上以 2 美元反式作用的树的封闭简单自变群的不可还原单元代表进行了分类,这些自变群在每个顶点的局部作用都包含交替群。作为应用,我们证实了克劳迪奥-内比亚(Claudio Nebbia)关于$(d_0,d_1)$半规则树的CCR猜想,即$d_0,d_1in Theta $,其中$Theta $是正整数的渐近密集集。
{"title":"RADU GROUPS ACTING ON TREES ARE CCR","authors":"LANCELOT SEMAL","doi":"10.1017/s1446788723000381","DOIUrl":"https://doi.org/10.1017/s1446788723000381","url":null,"abstract":"<p>We classify the irreducible unitary representations of closed simple groups of automorphisms of trees acting <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305152040603-0270:S1446788723000381:S1446788723000381_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$2$</span></span></img></span></span>-transitively on the boundary and whose local action at every vertex contains the alternating group. As an application, we confirm Claudio Nebbia’s CCR conjecture on trees for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305152040603-0270:S1446788723000381:S1446788723000381_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(d_0,d_1)$</span></span></img></span></span>-semi-regular trees such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305152040603-0270:S1446788723000381:S1446788723000381_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d_0,d_1in Theta $</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305152040603-0270:S1446788723000381:S1446788723000381_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$Theta $</span></span></img></span></span> is an asymptotically dense set of positive integers.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"27 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140047484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE -GENERATION OF THE FINITE SIMPLE ODD-DIMENSIONAL ORTHOGONAL GROUPS 有限简单奇维正交群的-生成
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-02-28 DOI: 10.1017/s1446788724000016
MARCO ANTONIO PELLEGRINI, MARIA CHIARA TAMBURINI BELLANI
The complete classification of the finite simple groups that are $(2,3)$ -generated is a problem which is still open only for orthogonal groups. Here, we construct $(2, 3)$ -generators for the finite odd-dimensional orthogonal groups $Omega _{2k+1}(q)$ , $kgeq 4$ . As a byproduct, we also obtain $(2,3)$ -generators for $Omega _{4k}^+(q)$ with $kgeq 3$ and q odd, and for $Omega _{4k+2}^pm (q)$ with $kgeq 4$ and $qequiv pm 1~ mathrm {(mod~ 4)}$ .
关于$(2,3)$-生成的有限简单群的完整分类是一个仅对正交群而言尚未解决的问题。在这里,我们为有限奇维正交群 $Omega _{2k+1}(q)$ , $kgeq 4$ 构建了 $(2, 3)$ 生成器。作为副产品,我们还得到了 $(2,3)$的 $Omega_{4k}^+(q)$的生成器,其中 $kgeq 3$,q 为奇数;以及 $Omega _{4k+2}^pm (q)$的生成器,其中 $kgeq 4$,$qequiv pm 1~ mathrm {(mod~ 4)}$ 。
{"title":"THE -GENERATION OF THE FINITE SIMPLE ODD-DIMENSIONAL ORTHOGONAL GROUPS","authors":"MARCO ANTONIO PELLEGRINI, MARIA CHIARA TAMBURINI BELLANI","doi":"10.1017/s1446788724000016","DOIUrl":"https://doi.org/10.1017/s1446788724000016","url":null,"abstract":"The complete classification of the finite simple groups that are <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline2.png\" /> <jats:tex-math> $(2,3)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generated is a problem which is still open only for orthogonal groups. Here, we construct <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline3.png\" /> <jats:tex-math> $(2, 3)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generators for the finite odd-dimensional orthogonal groups <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline4.png\" /> <jats:tex-math> $Omega _{2k+1}(q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline5.png\" /> <jats:tex-math> $kgeq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. As a byproduct, we also obtain <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline6.png\" /> <jats:tex-math> $(2,3)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-generators for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline7.png\" /> <jats:tex-math> $Omega _{4k}^+(q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline8.png\" /> <jats:tex-math> $kgeq 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>q</jats:italic> odd, and for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline9.png\" /> <jats:tex-math> $Omega _{4k+2}^pm (q)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline10.png\" /> <jats:tex-math> $kgeq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1446788724000016_inline11.png\" /> <jats:tex-math> $qequiv pm 1~ mathrm {(mod~ 4)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"119 50 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140002580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON THE ITERATIONS AND THE ARGUMENT DISTRIBUTION OF MEROMORPHIC FUNCTIONS 关于同态函数的迭代和参数分布
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-02-15 DOI: 10.1017/s1446788723000393
JIE DING, JIANHUA ZHENG
This paper consists of two parts. The first is to study the existence of a point a at the intersection of the Julia set and the escaping set such that a goes to infinity under iterates along Julia directions or Borel directions. Additionally, we find such points that approximate all Borel directions to escape if the meromorphic functions have positive lower order. We confirm the existence of such slowly escaping points under a weaker growth condition. The second is to study the connection between the Fatou set and argument distribution. In view of the filling disks, we show nonexistence of multiply connected Fatou components if an entire function satisfies a weaker growth condition. We prove that the absence of singular directions implies the nonexistence of large annuli in the Fatou set.
本文由两部分组成。第一部分是研究在 Julia 集和逸散集的交点上是否存在一个点 a,使得 a 在沿着 Julia 方向或 Borel 方向迭代的情况下达到无穷大。此外,我们还发现了这样的点,即如果分形函数具有正低阶,则近似于所有 Borel 方向的逸出。我们在一个较弱的增长条件下证实了这种缓慢逸出点的存在。其次是研究法图集与参数分布之间的联系。鉴于填充盘的存在,我们证明了如果整个函数满足较弱的增长条件,多重连接的法图集分量是不存在的。我们证明了奇异方向的不存在意味着法图集合中大环面的不存在。
{"title":"ON THE ITERATIONS AND THE ARGUMENT DISTRIBUTION OF MEROMORPHIC FUNCTIONS","authors":"JIE DING, JIANHUA ZHENG","doi":"10.1017/s1446788723000393","DOIUrl":"https://doi.org/10.1017/s1446788723000393","url":null,"abstract":"This paper consists of two parts. The first is to study the existence of a point <jats:italic>a</jats:italic> at the intersection of the Julia set and the escaping set such that <jats:italic>a</jats:italic> goes to infinity under iterates along Julia directions or Borel directions. Additionally, we find such points that approximate all Borel directions to escape if the meromorphic functions have positive lower order. We confirm the existence of such slowly escaping points under a weaker growth condition. The second is to study the connection between the Fatou set and argument distribution. In view of the filling disks, we show nonexistence of multiply connected Fatou components if an entire function satisfies a weaker growth condition. We prove that the absence of singular directions implies the nonexistence of large annuli in the Fatou set.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"53 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139768268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE RIEFFEL CORRESPONDENCE FOR EQUIVALENT FELL BUNDLES 等价落体束的里菲尔对应关系
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-01-17 DOI: 10.1017/s144678872300037x
S. KALISZEWSKI, JOHN QUIGG, DANA P. WILLIAMS

We establish a generalized Rieffel correspondence for ideals in equivalent Fell bundles.

我们建立了等价费尔束中理想的广义里费尔对应关系。
{"title":"THE RIEFFEL CORRESPONDENCE FOR EQUIVALENT FELL BUNDLES","authors":"S. KALISZEWSKI, JOHN QUIGG, DANA P. WILLIAMS","doi":"10.1017/s144678872300037x","DOIUrl":"https://doi.org/10.1017/s144678872300037x","url":null,"abstract":"<p>We establish a generalized Rieffel correspondence for ideals in equivalent Fell bundles.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"19 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139482754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A WEIGHTED ESTIMATE OF COMMUTATORS OF BOCHNER–RIESZ OPERATORS FOR HERMITE OPERATOR 对 Hermite 算子的 Bochner-riesz 算子换元的加权估计
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2024-01-15 DOI: 10.1017/s1446788723000368
PENG CHEN, XIXI LIN
<p>Let <span>H</span> be the Hermite operator <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline2.png"><span data-mathjax-type="texmath"><span>$-Delta +|x|^2$</span></span></img></span></span> on <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline3.png"><span data-mathjax-type="texmath"><span>$mathbb {R}^n$</span></span></img></span></span>. We prove a weighted <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline4.png"><span data-mathjax-type="texmath"><span>$L^2$</span></span></img></span></span> estimate of the maximal commutator operator <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline5.png"><span data-mathjax-type="texmath"><span>$sup _{R>0}|[b, S_R^lambda (H)](f)|$</span></span></img></span></span>, where <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline6.png"><span data-mathjax-type="texmath"><span>$ [b, S_R^lambda (H)](f) = bS_R^lambda (H) f - S_R^lambda (H)(bf) $</span></span></img></span></span> is the commutator of a BMO function <span>b</span> and the Bochner–Riesz means <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline7.png"><span data-mathjax-type="texmath"><span>$S_R^lambda (H)$</span></span></img></span></span> for the Hermite operator <span>H</span>. As an application, we obtain the almost everywhere convergence of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline8.png"><span data-mathjax-type="texmath"><span>$[b, S_R^lambda (H)](f)$</span></span></img></span></span> for large <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline9.png"><span data-mathjax-type="texmath"><span>$lambda $</span></span></img></span></span> and <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline10.png"><span data-mathjax-type="texmath"><span>$fin
假设 H 是 $mathbb {R}^n$ 上的赫米特算子 $-Delta +|x|^2$ 。我们将证明最大换元算子 $sup _{R>;0}|[b,S_R^/lambda (H)](f)|$ 其中 $ [b, S_R^lambda (H)](f) = bS_R^lambda (H) f - S_R^lambda (H)(bf) $ 是 BMO 函数 b 的换元子和 Hermite 算子 H 的 Bochner-Riesz means $S_R^/lambda(H)$。作为应用,我们得到了 $[b, S_R^lambda (H)](f)$ 对于大 $lambda $ 和 $fin L^p(mathbb {R}^n)$ 的几乎无处收敛性。
{"title":"A WEIGHTED ESTIMATE OF COMMUTATORS OF BOCHNER–RIESZ OPERATORS FOR HERMITE OPERATOR","authors":"PENG CHEN, XIXI LIN","doi":"10.1017/s1446788723000368","DOIUrl":"https://doi.org/10.1017/s1446788723000368","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;H&lt;/span&gt; be the Hermite operator &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$-Delta +|x|^2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; on &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {R}^n$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. We prove a weighted &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$L^2$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; estimate of the maximal commutator operator &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$sup _{R&gt;0}|[b, S_R^lambda (H)](f)|$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, where &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$ [b, S_R^lambda (H)](f) = bS_R^lambda (H) f - S_R^lambda (H)(bf) $&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is the commutator of a BMO function &lt;span&gt;b&lt;/span&gt; and the Bochner–Riesz means &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$S_R^lambda (H)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; for the Hermite operator &lt;span&gt;H&lt;/span&gt;. As an application, we obtain the almost everywhere convergence of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$[b, S_R^lambda (H)](f)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; for large &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline9.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$lambda $&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; and &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040524355-0595:S1446788723000368:S1446788723000368_inline10.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$fin","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"9 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139468895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE PRO--SOLVABLE TOPOLOGY ON A FREE GROUP 自由基上的亲可解拓扑学
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2023-12-22 DOI: 10.1017/s1446788723000162
Claude Marion, P. V. Silva, Gareth Tracey
We prove that, given a finitely generated subgroup H of a free group F, the following questions are decidable: is H closed (dense) in F for the pro-(met)abelian topology? Is the closure of H in F for the pro-(met)abelian topology finitely generated? We show also that if the latter question has a positive answer, then we can effectively construct a basis for the closure, and the closure has decidable membership problem in any case. Moreover, it is decidable whether H is closed for the pro- $mathbf {V}$ topology when $mathbf {V}$ is an equational pseudovariety of finite groups, such as the pseudovariety $mathbf {S}_k$ of all finite solvable groups with derived length $leq k$ . We also connect the pro-abelian topology with the topologies defined by abelian groups of bounded exponent.
我们证明,给定自由群 F 的有限生成子群 H,下列问题是可解的:对于原(元)阿贝尔拓扑学,H 在 F 中封闭(致密)吗?在亲(元)阿贝尔拓扑中,H 在 F 中的闭是有限生成的吗?我们还将证明,如果后一个问题的答案是肯定的,那么我们就能有效地为闭包构造一个基础,而且闭包在任何情况下都有可解的成员问题。此外,当$mathbf {V}$是有限群的等价伪变体时,比如所有派生长度为$leq k$的有限可解群的伪变体$mathbf {S}_k$ ,对于亲$mathbf {V}$拓扑来说,H是否封闭也是可解的。我们还将原阿贝尔拓扑与有界幂的无性群定义的拓扑联系起来。
{"title":"THE PRO--SOLVABLE TOPOLOGY ON A FREE GROUP","authors":"Claude Marion, P. V. Silva, Gareth Tracey","doi":"10.1017/s1446788723000162","DOIUrl":"https://doi.org/10.1017/s1446788723000162","url":null,"abstract":"\u0000 We prove that, given a finitely generated subgroup H of a free group F, the following questions are decidable: is H closed (dense) in F for the pro-(met)abelian topology? Is the closure of H in F for the pro-(met)abelian topology finitely generated? We show also that if the latter question has a positive answer, then we can effectively construct a basis for the closure, and the closure has decidable membership problem in any case. Moreover, it is decidable whether H is closed for the pro-\u0000 \u0000 \u0000 \u0000$mathbf {V}$\u0000\u0000 \u0000 topology when \u0000 \u0000 \u0000 \u0000$mathbf {V}$\u0000\u0000 \u0000 is an equational pseudovariety of finite groups, such as the pseudovariety \u0000 \u0000 \u0000 \u0000$mathbf {S}_k$\u0000\u0000 \u0000 of all finite solvable groups with derived length \u0000 \u0000 \u0000 \u0000$leq k$\u0000\u0000 \u0000 . We also connect the pro-abelian topology with the topologies defined by abelian groups of bounded exponent.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"42 32","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138946488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QUALITATIVE UNCERTAINTY PRINCIPLE ON CERTAIN LIE GROUPS 关于某些谎言群的定性不确定性原理
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2023-12-18 DOI: 10.1017/s1446788723000150
ARUP CHATTOPADHYAY, DEBKUMAR GIRI, R. K. SRIVASTAVA

In this article, we study the recent development of the qualitative uncertainty principle on certain Lie groups. In particular, we consider that if the Weyl transform on certain step-two nilpotent Lie groups is of finite rank, then the function has to be zero almost everywhere as long as the nonvanishing set for the function has finite measure. Further, we consider that if the Weyl transform of each Fourier–Wigner piece of a suitable function on the Heisenberg motion group is of finite rank, then the function has to be zero almost everywhere whenever the nonvanishing set for each Fourier–Wigner piece has finite measure.

在这篇文章中,我们研究了定性不确定性原理在某些李群上的最新发展。特别是,我们认为,如果某些阶二零potent Lie 群上的 Weyl 变换是有限秩的,那么只要函数的非消失集具有有限度量,函数几乎处处都必须为零。此外,我们还考虑到,如果海森堡运动群上合适函数的每个傅里叶-维格纳片的韦尔变换是有限秩的,那么只要每个傅里叶-维格纳片的非消失集具有有限度量,该函数几乎处处为零。
{"title":"QUALITATIVE UNCERTAINTY PRINCIPLE ON CERTAIN LIE GROUPS","authors":"ARUP CHATTOPADHYAY, DEBKUMAR GIRI, R. K. SRIVASTAVA","doi":"10.1017/s1446788723000150","DOIUrl":"https://doi.org/10.1017/s1446788723000150","url":null,"abstract":"<p>In this article, we study the recent development of the qualitative uncertainty principle on certain Lie groups. In particular, we consider that if the Weyl transform on certain step-two nilpotent Lie groups is of finite rank, then the function has to be zero almost everywhere as long as the nonvanishing set for the function has finite measure. Further, we consider that if the Weyl transform of each Fourier–Wigner piece of a suitable function on the Heisenberg motion group is of finite rank, then the function has to be zero almost everywhere whenever the nonvanishing set for each Fourier–Wigner piece has finite measure.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"116 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138716298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NORMAL SUBMONOIDS AND CONGRUENCES ON A MONOID 正子单元和单元上的同余
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2023-12-18 DOI: 10.1017/s1446788723000204
JOSEP ELGUETA
<p>A notion of <span>normal submonoid</span> of a monoid <span>M</span> is introduced that generalizes the normal subgroups of a group. When ordered by inclusion, the set <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline1.png"><span data-mathjax-type="texmath"><span>$mathsf {NorSub}(M)$</span></span></img></span></span> of normal submonoids of <span>M</span> is a complete lattice. Joins are explicitly described and the lattice is computed for the finite full transformation monoids <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline2.png"><span data-mathjax-type="texmath"><span>$T_n$</span></span></img></span></span>, <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline3.png"><span data-mathjax-type="texmath"><span>$ngeq ~1$</span></span></img></span></span>. It is also shown that <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline4.png"><span data-mathjax-type="texmath"><span>$mathsf {NorSub}(M)$</span></span></img></span></span> is modular for a specific family of commutative monoids, including all Krull monoids, and that it, as a join semilattice, embeds isomorphically onto a join subsemilattice of the lattice <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline5.png"><span data-mathjax-type="texmath"><span>$mathsf {Cong}(M)$</span></span></img></span></span> of congruences on <span>M</span>. This leads to a new strategy for computing <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline6.png"><span data-mathjax-type="texmath"><span>$mathsf {Cong}(M)$</span></span></img></span></span> consisting of computing <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline7.png"><span data-mathjax-type="texmath"><span>$mathsf {NorSub}(M)$</span></span></img></span></span> and the so-called unital congruences on the quotients of <span>M</span> modulo its normal submonoids. This provides a new perspective on Malcev’s computation of the congruences on <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id
本文引入了一个单元 M 的正则子单元的概念,它概括了一个群的正则子群。当通过包含排序时,M 的正则子单体集合 $mathsf {NorSub}(M)$ 是一个完整的网格。明确描述了连接,并计算了有限全变换单体 $T_n$,$ngeq ~1$的网格。研究还表明,$mathsf {NorSub}(M)$ 对于一个特定的交换单体族(包括所有的 Krull 单体)来说是模块化的,而且它作为一个连接半网格,同构地嵌入到 M 上全等的网格 $mathsf {Cong}(M)$ 的连接子半格上。这就引出了一种计算 $mathsf {Cong}(M)$ 的新策略,它包括计算 $mathsf {NorSub}(M)$ 和 M 的商上的所谓unital congruences modulo its normal submonoids。这为马尔切夫计算 $T_n$ 上的同余提供了一个新视角。
{"title":"NORMAL SUBMONOIDS AND CONGRUENCES ON A MONOID","authors":"JOSEP ELGUETA","doi":"10.1017/s1446788723000204","DOIUrl":"https://doi.org/10.1017/s1446788723000204","url":null,"abstract":"&lt;p&gt;A notion of &lt;span&gt;normal submonoid&lt;/span&gt; of a monoid &lt;span&gt;M&lt;/span&gt; is introduced that generalizes the normal subgroups of a group. When ordered by inclusion, the set &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline1.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathsf {NorSub}(M)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of normal submonoids of &lt;span&gt;M&lt;/span&gt; is a complete lattice. Joins are explicitly described and the lattice is computed for the finite full transformation monoids &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$T_n$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;, &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$ngeq ~1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;. It is also shown that &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathsf {NorSub}(M)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is modular for a specific family of commutative monoids, including all Krull monoids, and that it, as a join semilattice, embeds isomorphically onto a join subsemilattice of the lattice &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathsf {Cong}(M)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of congruences on &lt;span&gt;M&lt;/span&gt;. This leads to a new strategy for computing &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathsf {Cong}(M)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; consisting of computing &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathsf {NorSub}(M)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; and the so-called unital congruences on the quotients of &lt;span&gt;M&lt;/span&gt; modulo its normal submonoids. This provides a new perspective on Malcev’s computation of the congruences on &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"69 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138717306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BRATTELI–VERSHIKISABILITY OF POLYGONAL BILLIARDS ON THE HYPERBOLIC PLANE 双曲面上多边形台球的布拉泰利-反希基可变性
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2023-12-15 DOI: 10.1017/s1446788723000174
ANIMA NAGAR, PRADEEP SINGH
Bratteli–Vershik models of compact, invertible zero-dimensional systems have been well studied. We take up such a study for polygonal billiards on the hyperbolic plane, thus considering these models beyond zero-dimensions. We describe the associated Bratteli models and show that these billiard dynamics can be described by Vershik maps.
对紧凑、可反转零维系统的布拉泰利-韦希克模型已有深入研究。我们对双曲面上的多边形台球进行了这样的研究,从而考虑了这些超出零维的模型。我们描述了相关的布拉泰利模型,并证明这些台球动力学可以用 Vershik 映射来描述。
{"title":"BRATTELI–VERSHIKISABILITY OF POLYGONAL BILLIARDS ON THE HYPERBOLIC PLANE","authors":"ANIMA NAGAR, PRADEEP SINGH","doi":"10.1017/s1446788723000174","DOIUrl":"https://doi.org/10.1017/s1446788723000174","url":null,"abstract":"Bratteli–Vershik models of compact, invertible zero-dimensional systems have been well studied. We take up such a study for polygonal billiards on the hyperbolic plane, thus considering these models beyond zero-dimensions. We describe the associated Bratteli models and show that these billiard dynamics can be described by Vershik maps.","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"12 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FINITELY PRESENTED INVERSE SEMIGROUPS WITH FINITELY MANY IDEMPOTENTS IN EACH -CLASS AND NON-HAUSDORFF UNIVERSAL GROUPOIDS 在每个-类中具有有限多个幂等子的有限呈现反半群和非豪斯多夫普群
IF 0.7 4区 数学 Q3 MATHEMATICS Pub Date : 2023-12-13 DOI: 10.1017/s1446788723000198
PEDRO V. SILVA, BENJAMIN STEINBERG

The complex algebra of an inverse semigroup with finitely many idempotents in each $mathcal D$-class is stably finite by a result of Munn. This can be proved fairly easily using $C^{*}$-algebras for inverse semigroups satisfying this condition that have a Hausdorff universal groupoid, or more generally for direct limits of inverse semigroups satisfying this condition and having Hausdorff universal groupoids. It is not difficult to see that a finitely presented inverse semigroup with a non-Hausdorff universal groupoid cannot be a direct limit of inverse semigroups with Hausdorff universal groupoids. We construct here countably many nonisomorphic finitely presented inverse semigroups with finitely many idempotents in each $mathcal D$-class and non-Hausdorff universal groupoids. At this time, there is not a clear $C^{*}$-algebraic technique to prove these inverse semigroups have stably finite complex algebras.

根据芒恩的一个结果,在每个 $mathcal D$ 类中具有有限多个幂等子的反半群的复代数是稳定有限的。对于满足这一条件且具有豪斯多夫通用群集的反半群,或者更一般地对于满足这一条件且具有豪斯多夫通用群集的反半群的直接极限,使用 $C^{*}$ 代数可以相当容易地证明这一点。不难看出,具有非豪斯多夫万能群的有限呈现反半群不可能是具有豪斯多夫万能群的反半群的直接极限。我们在这里构造了无数个非同构的有限呈现的反半群,这些反半群在每个 $mathcal D$ 类中都有有限多个empotents,并且都是非豪斯多夫万能群。目前,还没有明确的$C^{*}$代数技术来证明这些反半群有稳定的有限复代数。
{"title":"FINITELY PRESENTED INVERSE SEMIGROUPS WITH FINITELY MANY IDEMPOTENTS IN EACH -CLASS AND NON-HAUSDORFF UNIVERSAL GROUPOIDS","authors":"PEDRO V. SILVA, BENJAMIN STEINBERG","doi":"10.1017/s1446788723000198","DOIUrl":"https://doi.org/10.1017/s1446788723000198","url":null,"abstract":"<p>The complex algebra of an inverse semigroup with finitely many idempotents in each <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal D$</span></span></img></span></span>-class is stably finite by a result of Munn. This can be proved fairly easily using <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$C^{*}$</span></span></img></span></span>-algebras for inverse semigroups satisfying this condition that have a Hausdorff universal groupoid, or more generally for direct limits of inverse semigroups satisfying this condition and having Hausdorff universal groupoids. It is not difficult to see that a finitely presented inverse semigroup with a non-Hausdorff universal groupoid cannot be a direct limit of inverse semigroups with Hausdorff universal groupoids. We construct here countably many nonisomorphic finitely presented inverse semigroups with finitely many idempotents in each <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathcal D$</span></span></img></span></span>-class and non-Hausdorff universal groupoids. At this time, there is not a clear <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212123316423-0307:S1446788723000198:S1446788723000198_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$C^{*}$</span></span></img></span></span>-algebraic technique to prove these inverse semigroups have stably finite complex algebras.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"42 Pt B 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138578897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the Australian Mathematical Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1