首页 > 最新文献

bioRxiv - Bioengineering最新文献

英文 中文
3D printed microtissue cassettes enabling high throughput proton radiobiological assays 三维打印微组织盒实现高通量质子放射生物学测定
Pub Date : 2024-08-11 DOI: 10.1101/2024.08.10.607473
Chih-Tsung Yang, I-Chun Cho, Ching-Fang Yu, Edward Cheah, Tesi Liu, Yi-Ping Lin, Sing Yu, Jyun-Wei Jheng, Ivan Kempson, Tsi-Chian Chao, Sen-Hao Lee, Eva Bezak, Benjamin Thierry
Uncertainties on proton relative biological effectiveness (RBE) across the spread out of Bragg peak (SOBP) (typically assumed to be 1.1) may lead to suboptimal treatment plan and unwarranted toxicity to organs-at-risk. Herein, we report a reliable analytical method to determine the proton RBE along the SOBP and distal fall-off region. The 3D microtissue cassette enables the high throughput assessment of biological assays including clonogenic assay and γ-H2AX assay following a single proton irradiation. Clonogenic assay shows the RBE of 1.6 (10% cellular survival) which is consistent with the deter-mined RBE of 1.58 using the γ-H2AX assay. Besides, we also show that the high spatial resolution of the cassette can distinguish the minute but significant foci changes (number, area) in response to small proton radiation dose fraction. The results validate the reliability of our setup in addressing critical proton radiobiological questions.
质子在布拉格峰外扩散区(SOBP)(通常假定为 1.1)的相对生物效应(RBE)的不确定性可能会导致治疗方案不理想,并对危险器官产生不必要的毒性。在此,我们报告了一种可靠的分析方法,用于确定沿 SOBP 和远端落区的质子 RBE。三维微组织盒可在单次质子辐照后进行高通量生物检测评估,包括克隆生成检测和 γ-H2AX 检测。克隆生成检测显示 RBE 为 1.6(10% 细胞存活率),这与使用 γ-H2AX 检测得出的 RBE 1.58 相符。此外,我们还表明,盒式磁带的高空间分辨率可以分辨出微小但显著的病灶变化(数量、面积),这些变化对质子辐射剂量分数的影响很小。这些结果验证了我们的装置在解决关键质子放射生物学问题方面的可靠性。
{"title":"3D printed microtissue cassettes enabling high throughput proton radiobiological assays","authors":"Chih-Tsung Yang, I-Chun Cho, Ching-Fang Yu, Edward Cheah, Tesi Liu, Yi-Ping Lin, Sing Yu, Jyun-Wei Jheng, Ivan Kempson, Tsi-Chian Chao, Sen-Hao Lee, Eva Bezak, Benjamin Thierry","doi":"10.1101/2024.08.10.607473","DOIUrl":"https://doi.org/10.1101/2024.08.10.607473","url":null,"abstract":"Uncertainties on proton relative biological effectiveness (RBE) across the spread out of Bragg peak (SOBP) (typically assumed to be 1.1) may lead to suboptimal treatment plan and unwarranted toxicity to organs-at-risk. Herein, we report a reliable analytical method to determine the proton RBE along the SOBP and distal fall-off region. The 3D microtissue cassette enables the high throughput assessment of biological assays including clonogenic assay and γ-H2AX assay following a single proton irradiation. Clonogenic assay shows the RBE of 1.6 (10% cellular survival) which is consistent with the deter-mined RBE of 1.58 using the γ-H2AX assay. Besides, we also show that the high spatial resolution of the cassette can distinguish the minute but significant foci changes (number, area) in response to small proton radiation dose fraction. The results validate the reliability of our setup in addressing critical proton radiobiological questions.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthetic mucus biomaterials synergize with antibiofilm agents to combat Pseudomonas aeruginosa biofilms 合成粘液生物材料与抗生物膜剂协同作用,对抗铜绿假单胞菌生物膜
Pub Date : 2024-08-10 DOI: 10.1101/2024.08.09.607383
Sydney Yang, Alexa Stern, Gregg Duncan
Bacterial biofilms are often highly resistant to antimicrobials causing persistent infections which when not effectively managed can significantly worsen clinical outcomes. As such, alternatives to standard antibiotic therapies have been highly sought after to address difficult-to-treat biofilm-associated infections. We hypothesized a biomaterial-based approach using the innate functions of mucins to modulate bacterial surface attachment and virulence could provide a new therapeutic strategy against biofilms. Based on our testing in Pseudomonas aeruginosa biofilms, we found synthetic mucus biomaterials can inhibit biofilm formation and significantly reduce the thickness of mature biofilms. In addition, we evaluated if synthetic mucus biomaterials could work synergistically with DNase and/or α-amylase for enhanced biofilm dispersal. Combination treatment with these antibiofilm agents and synthetic mucus biomaterials resulted in up to 3 log reductions in viability of mature P. aeruginosa biofilms. Overall, this work provides a new bio-inspired, combinatorial approach to address biofilms and antibiotic-resistant bacterial infections.
细菌生物膜通常对抗菌药有很强的耐药性,会造成持续性感染,如果得不到有效控制,会严重恶化临床治疗效果。因此,人们一直在寻找标准抗生素疗法的替代品,以解决难以治疗的生物膜相关感染。我们假设一种基于生物材料的方法,利用粘蛋白的先天功能来调节细菌的表面附着和毒力,可以提供一种针对生物膜的新治疗策略。根据对铜绿假单胞菌生物膜的测试,我们发现合成粘液生物材料可以抑制生物膜的形成,并显著降低成熟生物膜的厚度。此外,我们还评估了合成粘液生物材料能否与 DNase 和/或 α-amylase 协同作用,增强生物膜的分散能力。使用这些抗生物膜剂和合成粘液生物材料进行联合处理后,成熟铜绿假单胞菌生物膜的存活率最多可降低 3 个对数值。总之,这项研究为解决生物膜和抗生素耐药细菌感染问题提供了一种新的生物启发式组合方法。
{"title":"Synthetic mucus biomaterials synergize with antibiofilm agents to combat Pseudomonas aeruginosa biofilms","authors":"Sydney Yang, Alexa Stern, Gregg Duncan","doi":"10.1101/2024.08.09.607383","DOIUrl":"https://doi.org/10.1101/2024.08.09.607383","url":null,"abstract":"Bacterial biofilms are often highly resistant to antimicrobials causing persistent infections which when not effectively managed can significantly worsen clinical outcomes. As such, alternatives to standard antibiotic therapies have been highly sought after to address difficult-to-treat biofilm-associated infections. We hypothesized a biomaterial-based approach using the innate functions of mucins to modulate bacterial surface attachment and virulence could provide a new therapeutic strategy against biofilms. Based on our testing in Pseudomonas aeruginosa biofilms, we found synthetic mucus biomaterials can inhibit biofilm formation and significantly reduce the thickness of mature biofilms. In addition, we evaluated if synthetic mucus biomaterials could work synergistically with DNase and/or α-amylase for enhanced biofilm dispersal. Combination treatment with these antibiofilm agents and synthetic mucus biomaterials resulted in up to 3 log reductions in viability of mature P. aeruginosa biofilms. Overall, this work provides a new bio-inspired, combinatorial approach to address biofilms and antibiotic-resistant bacterial infections.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging-Guided Metabolic Radiosensitization of Pediatric Rhabdoid Tumors 成像引导下的小儿横纹肌瘤代谢放射增敏术
Pub Date : 2024-08-10 DOI: 10.1101/2024.08.09.607364
Wenxi Xia, Matthew Goff, Neetu Singh, Jiemin Huang, David Gillespie, Esther Need, Randy Jensen, Mark Pagel, Amit Maity, Sixiang Shi, Shreya Goel
Tumor hypoxia leads to increased resistance to radiation therapy (RT), resulting in markedly worse clinical outcomes in the treatment and management of pediatric malignant rhabdoid tumors (MRT). To alleviate hypoxia in MRT, we repurposed an FDA approved, mitochondrial oxidative phosphorylation (OXPHOS) inhibitor, Atovaquone (AVO), to inhibit oxygen consumption and thereby enhance the sensitivity of tumor cells to low dose RT in MRT by hypoxia alleviation. Additionally, to better understand the tumor response induced by AVO and optimize the combination with RT, we employed an emerging, noninvasive imaging modality, known as multispectral optoacoustic tomography (MSOT), to monitor and evaluate real-time dynamic changes in tumor hypoxia and vascular perfusion. Oxygen-Enhanced (OE)-MSOT could measure the change of tumor oxygenation in the MRT xenograft models after AVO and RT treatments, indicating its potential as a response biomarker. OE-MSOT showed that treating MRT mouse models with AVO resulted in a transient increase in oxygen saturation (ΔsO2) in tumors when the mice were subjected to oxygen challenge, while RT or saline treated groups produced no change. In AVO+RT combination groups, the tumors showed an increase in ΔsO2 after AVO administration followed by a significant decrease after RT, that correlated with a strong anti-tumor response, demarcated by complete regression of tumors, with no relapse on long-term monitoring. These observations were histologically validated. In MRT models of acquired AVO resistance, combination therapy failed to alleviate tumoral hypoxia and elicit any therapeutic benefit. Together, our data highlights the utility of repurposing anti-malarial AVO as an anticancer adjuvant for enabling low dose RT for pediatric patients.
肿瘤缺氧会导致对放射治疗(RT)的耐药性增加,从而使小儿恶性横纹肌瘤(MRT)的临床治疗和管理效果明显降低。为了缓解 MRT 中的缺氧状况,我们将美国食品及药物管理局(FDA)批准的线粒体氧化磷酸化(OXPHOS)抑制剂阿托伐醌(AVO)重新用于抑制耗氧量,从而通过缓解缺氧状况提高肿瘤细胞对 MRT 中低剂量 RT 的敏感性。此外,为了更好地了解 AVO 诱导的肿瘤反应并优化与 RT 的结合,我们采用了一种新兴的无创成像模式,即多谱段光声断层扫描(MSOT),来监测和评估肿瘤缺氧和血管灌注的实时动态变化。氧增强(OE)-MSOT可以测量AVO和RT治疗后MRT异种移植模型中肿瘤氧合的变化,显示了其作为反应生物标志物的潜力。OE-MSOT显示,用AVO治疗MRT小鼠模型后,当小鼠受到氧挑战时,肿瘤内的氧饱和度(ΔsO2)会出现短暂升高,而RT或生理盐水治疗组则没有变化。在 AVO+RT 组合组中,AVO 给药后肿瘤的 ΔsO2 增加,RT 给药后肿瘤的 ΔsO2 显著下降,这与强烈的抗肿瘤反应有关,表现为肿瘤完全消退,长期监测无复发。这些观察结果在组织学上得到了验证。在获得性 AVO 抗性的 MRT 模型中,联合疗法未能缓解肿瘤缺氧,也未能产生任何治疗效果。总之,我们的数据凸显了将抗疟疾 AVO 作为抗癌辅助药物重新用于小儿患者低剂量 RT 的实用性。
{"title":"Imaging-Guided Metabolic Radiosensitization of Pediatric Rhabdoid Tumors","authors":"Wenxi Xia, Matthew Goff, Neetu Singh, Jiemin Huang, David Gillespie, Esther Need, Randy Jensen, Mark Pagel, Amit Maity, Sixiang Shi, Shreya Goel","doi":"10.1101/2024.08.09.607364","DOIUrl":"https://doi.org/10.1101/2024.08.09.607364","url":null,"abstract":"Tumor hypoxia leads to increased resistance to radiation therapy (RT), resulting in markedly worse clinical outcomes in the treatment and management of pediatric malignant rhabdoid tumors (MRT). To alleviate hypoxia in MRT, we repurposed an FDA approved, mitochondrial oxidative phosphorylation (OXPHOS) inhibitor, Atovaquone (AVO), to inhibit oxygen consumption and thereby enhance the sensitivity of tumor cells to low dose RT in MRT by hypoxia alleviation. Additionally, to better understand the tumor response induced by AVO and optimize the combination with RT, we employed an emerging, noninvasive imaging modality, known as multispectral optoacoustic tomography (MSOT), to monitor and evaluate real-time dynamic changes in tumor hypoxia and vascular perfusion. Oxygen-Enhanced (OE)-MSOT could measure the change of tumor oxygenation in the MRT xenograft models after AVO and RT treatments, indicating its potential as a response biomarker. OE-MSOT showed that treating MRT mouse models with AVO resulted in a transient increase in oxygen saturation (ΔsO2) in tumors when the mice were subjected to oxygen challenge, while RT or saline treated groups produced no change. In AVO+RT combination groups, the tumors showed an increase in ΔsO2 after AVO administration followed by a significant decrease after RT, that correlated with a strong anti-tumor response, demarcated by complete regression of tumors, with no relapse on long-term monitoring. These observations were histologically validated. In MRT models of acquired AVO resistance, combination therapy failed to alleviate tumoral hypoxia and elicit any therapeutic benefit. Together, our data highlights the utility of repurposing anti-malarial AVO as an anticancer adjuvant for enabling low dose RT for pediatric patients.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The limitation of lipidation: conversion of semaglutide from once-weekly to once-monthly dosing 脂化的限制:将塞马鲁肽从每周一次用药改为每月一次用药
Pub Date : 2024-08-10 DOI: 10.1101/2024.08.10.607458
Eric L Schneider, John A Hangasky, Rocio del Valle Fernandez, Gary W Ashley, Daniel V Santi
The objective of this work was to develop a long-acting form of the lipidated peptide semaglutide that can be administered to humans once-monthly. Semaglutide was attached to 50 μ diameter hydrogel microspheres by a cleavable linker with an expected in vivo release half-life of about one-month. After a single subcutaneous dose, the pharmacokinetic parameters of released semaglutide were determined in normal mice and the bodyweight loss was determined in diet induced obese mice. The results were used to simulate the pharmacokinetics of semaglutide released from the microspheres in humans.Semaglutide tethered to microspheres by a cleavable linker could be completely released with an in vitro half-life of ~55 days at pH 7.4. The in vivo half-life of released semaglutide was ~30 days, and a single dose in diet-induced obese mice resulted in a lean-sparing body weight loss of 20% over 1 month, statistically the same as semaglutide dosed twice daily. Simulations indicated the microsphere-semaglutide would permit once-monthly administration in humans. The microsphere-semaglutide conjugate described here should be suitable for once-monthly dosing in humans, and the same approach should enable conversion of other lipidated peptides from once-weekly to once-monthly administration.
这项研究的目的是开发一种脂化肽塞马鲁肽的长效制剂,人体可每月服用一次。塞马鲁肽通过可裂解连接剂附着在直径为 50 μ 的水凝胶微球上,预计体内释放半衰期约为一个月。单次皮下注射后,测定了正常小鼠体内释放的塞马鲁肽的药代动力学参数,并测定了饮食诱导肥胖小鼠的体重减轻情况。结果用于模拟微球释放的塞马鲁肽在人体中的药代动力学。在 pH 值为 7.4 的条件下,通过可裂解连接剂系在微球上的塞马鲁肽可完全释放,体外半衰期约为 55 天。释放出的塞马鲁肽在体内的半衰期约为30天,在饮食诱导的肥胖小鼠体内单次给药可在1个月内使体重减轻20%,在统计学上与每天给药两次的塞马鲁肽效果相同。模拟结果表明,微球-塞马鲁肽允许人体每月服用一次。本文所述的微球-塞马鲁肽共轭物应适合人体每月一次给药,同样的方法也能使其他脂化肽从每周一次给药转变为每月一次给药。
{"title":"The limitation of lipidation: conversion of semaglutide from once-weekly to once-monthly dosing","authors":"Eric L Schneider, John A Hangasky, Rocio del Valle Fernandez, Gary W Ashley, Daniel V Santi","doi":"10.1101/2024.08.10.607458","DOIUrl":"https://doi.org/10.1101/2024.08.10.607458","url":null,"abstract":"The objective of this work was to develop a long-acting form of the lipidated peptide semaglutide that can be administered to humans once-monthly. Semaglutide was attached to 50 μ diameter hydrogel microspheres by a cleavable linker with an expected in vivo release half-life of about one-month. After a single subcutaneous dose, the pharmacokinetic parameters of released semaglutide were determined in normal mice and the bodyweight loss was determined in diet induced obese mice. The results were used to simulate the pharmacokinetics of semaglutide released from the microspheres in humans.Semaglutide tethered to microspheres by a cleavable linker could be completely released with an in vitro half-life of ~55 days at pH 7.4. The in vivo half-life of released semaglutide was ~30 days, and a single dose in diet-induced obese mice resulted in a lean-sparing body weight loss of 20% over 1 month, statistically the same as semaglutide dosed twice daily. Simulations indicated the microsphere-semaglutide would permit once-monthly administration in humans. The microsphere-semaglutide conjugate described here should be suitable for once-monthly dosing in humans, and the same approach should enable conversion of other lipidated peptides from once-weekly to once-monthly administration.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-modal, Label-free, Optical Mapping of Cellular Metabolic Function and Oxidative Stress in 3D Engineered Brain Tissue Models 对三维工程脑组织模型中的细胞代谢功能和氧化应激进行多模式、无标记光学测绘
Pub Date : 2024-08-10 DOI: 10.1101/2024.08.08.607216
Yang Zhang, Maria Savvidou, Volha Liaudanskaya, Varshini Ramanathan, Thi Bui, Lindley Matthew, Ash Sze, Ugochukwu Obinna Ugwu, Fu Yuhang, Dilsizian E Matthew, Xinjie Chen, Sevara Nasritdinova, Aonkon Dey, Eric L Miller, David L Kaplan, Irene Georgakoudi
Brain metabolism is essential for the function of organisms. While established imaging methods provide valuable insights into brain metabolic function, they lack the resolution to capture important metabolic interactions and heterogeneity at the cellular level. Label-free, two-photon excited fluorescence imaging addresses this issue by enabling dynamic metabolic assessments at the single-cell level without manipulations. In this study, we demonstrate the impact of spectral imaging on the development of rigorous intensity and lifetime label-free imaging protocols to assess dynamically over time metabolic function in 3D engineered brain tissue models comprising human induced neural stem cells, astrocytes, and microglia. Specifically, we rely on multi-wavelength spectral imaging to identify the excitation/emission profiles of key cellular fluorophores within human brain cells, including NAD(P)H, LipDH, FAD, and lipofuscin. These enable development of methods to mitigate lipofuscin's overlap with NAD(P)H and flavin autofluorescence to extract reliable optical metabolic function metrics from images acquired at two excitation wavelengths over two emission bands. We present fluorescence intensity and lifetime metrics reporting on redox state, mitochondrial fragmentation, and NAD(P)H binding status in neuronal monoculture and triculture systems, to highlight the functional impact of metabolic interactions between different cell types. Our findings reveal significant metabolic differences between neurons and glial cells, shedding light on metabolic pathway utilization, including the glutathione pathway, OXPHOS, glycolysis, and fatty acid oxidation. Collectively, our studies establish a label-free, non-destructive approach to assess the metabolic function and interactions among different brain cell types relying on endogenous fluorescence and illustrate the complementary nature of information that is gained by combining intensity and lifetime-based images. Such methods can improve understanding of physiological brain function and dysfunction that occurs at the onset of cancers, traumatic injuries and neurodegenerative diseases.
大脑新陈代谢对生物体的功能至关重要。虽然已有的成像方法能提供有关大脑代谢功能的宝贵见解,但它们缺乏捕捉细胞水平上重要代谢相互作用和异质性的分辨率。无标记双光子激发荧光成像技术无需操作即可在单细胞水平进行动态代谢评估,从而解决了这一问题。在本研究中,我们展示了光谱成像对制定严格的强度和寿命无标记成像方案的影响,以评估由人类诱导神经干细胞、星形胶质细胞和小胶质细胞组成的三维工程脑组织模型的动态代谢功能。具体来说,我们依靠多波长光谱成像来识别人脑细胞内关键细胞荧光团的激发/发射曲线,包括 NAD(P)H、LipDH、FAD 和脂褐素。通过这些方法,我们开发出了减轻脂褐素与 NAD(P)H 和黄素自发荧光重叠的方法,从而从两个激发波长和两个发射波段获得的图像中提取可靠的光学代谢功能指标。我们展示了在神经元单培养和三培养系统中报告氧化还原状态、线粒体碎片和 NAD(P)H 结合状态的荧光强度和寿命指标,以突出不同细胞类型之间代谢相互作用的功能影响。我们的研究结果揭示了神经元和神经胶质细胞在代谢方面的显著差异,揭示了代谢途径的利用情况,包括谷胱甘肽途径、OXPHOS、糖酵解和脂肪酸氧化。总之,我们的研究建立了一种无标记、非破坏性的方法,依靠内源性荧光评估不同脑细胞类型之间的代谢功能和相互作用,并说明了通过结合基于强度和寿命的图像所获得信息的互补性。这种方法可以提高人们对大脑生理功能以及癌症、外伤和神经退行性疾病发病时出现的功能障碍的认识。
{"title":"Multi-modal, Label-free, Optical Mapping of Cellular Metabolic Function and Oxidative Stress in 3D Engineered Brain Tissue Models","authors":"Yang Zhang, Maria Savvidou, Volha Liaudanskaya, Varshini Ramanathan, Thi Bui, Lindley Matthew, Ash Sze, Ugochukwu Obinna Ugwu, Fu Yuhang, Dilsizian E Matthew, Xinjie Chen, Sevara Nasritdinova, Aonkon Dey, Eric L Miller, David L Kaplan, Irene Georgakoudi","doi":"10.1101/2024.08.08.607216","DOIUrl":"https://doi.org/10.1101/2024.08.08.607216","url":null,"abstract":"Brain metabolism is essential for the function of organisms. While established imaging methods provide valuable insights into brain metabolic function, they lack the resolution to capture important metabolic interactions and heterogeneity at the cellular level. Label-free, two-photon excited fluorescence imaging addresses this issue by enabling dynamic metabolic assessments at the single-cell level without manipulations. In this study, we demonstrate the impact of spectral imaging on the development of rigorous intensity and lifetime label-free imaging protocols to assess dynamically over time metabolic function in 3D engineered brain tissue models comprising human induced neural stem cells, astrocytes, and microglia. Specifically, we rely on multi-wavelength spectral imaging to identify the excitation/emission profiles of key cellular fluorophores within human brain cells, including NAD(P)H, LipDH, FAD, and lipofuscin. These enable development of methods to mitigate lipofuscin's overlap with NAD(P)H and flavin autofluorescence to extract reliable optical metabolic function metrics from images acquired at two excitation wavelengths over two emission bands. We present fluorescence intensity and lifetime metrics reporting on redox state, mitochondrial fragmentation, and NAD(P)H binding status in neuronal monoculture and triculture systems, to highlight the functional impact of metabolic interactions between different cell types. Our findings reveal significant metabolic differences between neurons and glial cells, shedding light on metabolic pathway utilization, including the glutathione pathway, OXPHOS, glycolysis, and fatty acid oxidation. Collectively, our studies establish a label-free, non-destructive approach to assess the metabolic function and interactions among different brain cell types relying on endogenous fluorescence and illustrate the complementary nature of information that is gained by combining intensity and lifetime-based images. Such methods can improve understanding of physiological brain function and dysfunction that occurs at the onset of cancers, traumatic injuries and neurodegenerative diseases.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
4D bioprinting shape-morphing tissues in granular support hydrogels: Sculpting structure and guiding maturation 在颗粒状支撑水凝胶中的 4D 生物打印成型组织:雕刻结构和引导成熟
Pub Date : 2024-08-10 DOI: 10.1101/2024.08.09.606830
Ankita Pramanick, Thomas Hayes, Eoin McEvoy, Abhay Pandit, Andrew Daly
During embryogenesis, organs undergo dynamic shape transformations that sculpt their final shape, composition, and function. Despite this, current organ bioprinting approaches typically employ bioinks that restrict cell-generated morphogenetic behaviours resulting in structurally static tissues. Here, we introduce a novel platform that enables the bioprinting of tissues that undergo programmable and predictable 4D shape-morphing driven by cell-generated forces. Our method utilises embedded bioprinting to deposit collagen-hyaluronic acid bioinks within yield-stress granular support hydrogels that can accommodate and regulate 4D shape-morphing through their viscoelastic properties. Importantly, we demonstrate precise control over 4D shape-morphing by modulating factors such as the initial print geometry, cell phenotype, bioink composition, and support hydrogel viscoelasticity. Further, we observed that shape-morphing actively sculpts cell and extracellular matrix alignment along the principal tissue axis through a stress-avoidance mechanism. To enable predictive design of 4D shape-morphing patterns, we developed a finite element model that accurately captures shape evolution at both the cellular and tissue levels. Finally, we show that programmed 4D shape-morphing enhances the structural and functional properties of iPSC-derived heart tissues. This ability to design, predict, and program 4D shape-morphing holds great potential for engineering organ rudiments that recapitulate morphogenetic processes to sculpt their final shape, composition, and function.
在胚胎发育过程中,器官会发生动态的形状转变,从而形成最终的形状、组成和功能。尽管如此,目前的器官生物打印方法通常采用限制细胞生成形态发生行为的生物墨水,从而产生结构静态的组织。在这里,我们介绍了一种新颖的平台,该平台可实现组织的生物打印,这种组织在细胞产生的力的驱动下发生可编程、可预测的 4D 形状变形。我们的方法利用嵌入式生物打印技术,在屈服应力颗粒支撑水凝胶中沉积胶原蛋白-透明质酸生物墨水,这种水凝胶可以通过其粘弹性特性适应和调节 4D 形状变形。重要的是,我们通过调节初始打印几何形状、细胞表型、生物墨水成分和支撑水凝胶粘弹性等因素,证明了对 4D 形状变形的精确控制。此外,我们还观察到,形状变形通过应力规避机制,积极地沿着主要组织轴线雕刻细胞和细胞外基质的排列。为实现 4D 形状变形模式的预测性设计,我们开发了一种有限元模型,可准确捕捉细胞和组织层面的形状演变。最后,我们展示了程序化 4D 形状变形能增强 iPSC 衍生心脏组织的结构和功能特性。这种设计、预测和编程 4D 形状变形的能力为工程器官雏形带来了巨大的潜力,这种雏形可以再现形态发生过程,以雕刻其最终形状、组成和功能。
{"title":"4D bioprinting shape-morphing tissues in granular support hydrogels: Sculpting structure and guiding maturation","authors":"Ankita Pramanick, Thomas Hayes, Eoin McEvoy, Abhay Pandit, Andrew Daly","doi":"10.1101/2024.08.09.606830","DOIUrl":"https://doi.org/10.1101/2024.08.09.606830","url":null,"abstract":"During embryogenesis, organs undergo dynamic shape transformations that sculpt their final shape, composition, and function. Despite this, current organ bioprinting approaches typically employ bioinks that restrict cell-generated morphogenetic behaviours resulting in structurally static tissues. Here, we introduce a novel platform that enables the bioprinting of tissues that undergo programmable and predictable 4D shape-morphing driven by cell-generated forces. Our method utilises embedded bioprinting to deposit collagen-hyaluronic acid bioinks within yield-stress granular support hydrogels that can accommodate and regulate 4D shape-morphing through their viscoelastic properties. Importantly, we demonstrate precise control over 4D shape-morphing by modulating factors such as the initial print geometry, cell phenotype, bioink composition, and support hydrogel viscoelasticity. Further, we observed that shape-morphing actively sculpts cell and extracellular matrix alignment along the principal tissue axis through a stress-avoidance mechanism. To enable predictive design of 4D shape-morphing patterns, we developed a finite element model that accurately captures shape evolution at both the cellular and tissue levels. Finally, we show that programmed 4D shape-morphing enhances the structural and functional properties of iPSC-derived heart tissues. This ability to design, predict, and program 4D shape-morphing holds great potential for engineering organ rudiments that recapitulate morphogenetic processes to sculpt their final shape, composition, and function.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local photo-crosslinking of native tissue matrix regulates cell function 原生组织基质的局部光交联调节细胞功能
Pub Date : 2024-08-10 DOI: 10.1101/2024.08.10.607417
Donia W Ahmed, Matthew L Tan, Jackson Gabbard, Yuchen Liu, Michael M Hu, Miriam Stevens, Firaol S Midekssa, Lin Han, Rachel Lynne Zemans, Brendon Baker, Claudia Loebel
Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study cell function. However, the initiation of fibrosis has largely been overlooked, due to the challenges in recapitulating early fibrotic lesions within the native extracellular microenvironment. Using visible light mediated photochemistry, we induced local crosslinking and stiffening of extracellular matrix proteins within ex vivo murine and human tissue. In ex vivo lung tissue of epithelial cell lineage-traced mice, local matrix crosslinking mimicked early fibrotic lesions that increased alveolar epithelial cell spreading, differentiation and extracellular matrix remodeling. However, inhibition of cytoskeletal tension or integrin engagement reduced epithelial cell spreading and differentiation, resulting in alveolar epithelial cell dedifferentiation and reduced extracellular matrix deposition. Our findings emphasize the role of local extracellular matrix crosslinking and remodeling in early-stage tissue fibrosis and have implications for ex vivo disease modeling and applications to other tissues.
在大多数组织内,细胞外基质微环境提供了引导细胞命运和功能的机械线索。细胞外基质的变化,如异常沉积、致密化和交联增加,是晚期纤维化疾病的特征,通常会导致器官功能障碍。生物材料已被广泛用于模拟纤维化基质的机械特性和研究细胞功能。然而,由于在原生细胞外微环境中重现早期纤维化病变存在挑战,纤维化的起始过程在很大程度上被忽视了。我们利用可见光介导的光化学方法,在活体鼠组织和人体组织中诱导细胞外基质蛋白的局部交联和硬化。在上皮细胞系追踪小鼠的体外肺组织中,局部基质交联模拟了早期纤维化病变,增加了肺泡上皮细胞的扩散、分化和细胞外基质重塑。然而,抑制细胞骨架张力或整合素参与会减少上皮细胞的扩散和分化,导致肺泡上皮细胞去分化和细胞外基质沉积减少。我们的发现强调了局部细胞外基质交联和重塑在早期组织纤维化中的作用,对体内外疾病建模和其他组织的应用具有重要意义。
{"title":"Local photo-crosslinking of native tissue matrix regulates cell function","authors":"Donia W Ahmed, Matthew L Tan, Jackson Gabbard, Yuchen Liu, Michael M Hu, Miriam Stevens, Firaol S Midekssa, Lin Han, Rachel Lynne Zemans, Brendon Baker, Claudia Loebel","doi":"10.1101/2024.08.10.607417","DOIUrl":"https://doi.org/10.1101/2024.08.10.607417","url":null,"abstract":"Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study cell function. However, the initiation of fibrosis has largely been overlooked, due to the challenges in recapitulating early fibrotic lesions within the native extracellular microenvironment. Using visible light mediated photochemistry, we induced local crosslinking and stiffening of extracellular matrix proteins within ex vivo murine and human tissue. In ex vivo lung tissue of epithelial cell lineage-traced mice, local matrix crosslinking mimicked early fibrotic lesions that increased alveolar epithelial cell spreading, differentiation and extracellular matrix remodeling. However, inhibition of cytoskeletal tension or integrin engagement reduced epithelial cell spreading and differentiation, resulting in alveolar epithelial cell dedifferentiation and reduced extracellular matrix deposition. Our findings emphasize the role of local extracellular matrix crosslinking and remodeling in early-stage tissue fibrosis and have implications for ex vivo disease modeling and applications to other tissues.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early differential impact of MeCP2 mutations on functional networks in Rett syndrome patient-derived human cerebral organoids MeCP2 突变对 Rett 综合征患者衍生人脑器官组织功能网络的早期不同影响
Pub Date : 2024-08-10 DOI: 10.1101/2024.08.10.607464
Tatsuya Osaki, Chloe Delepine, Yuma Osako, Devorah Kranz, April R Levin, Charles Nelson, Michela Fagiolini, Mriganka Sur
Human cerebral organoids derived from induced pluripotent stem cells can recapture early developmental processes and reveal changes involving neurodevelopmental disorders. Mutations in the X linked methyl CpG binding protein 2 (MECP2) gene are associated with Rett syndrome, and disease severity varies depending on the location and type of mutation. Here, we focused on neuronal activity in Rett syndrome patient-derived organoids, analyzing two types of MeCP2 mutations a missense mutation (R306C) and a truncating mutation (V247X) using calcium imaging with three-photon microscopy. Compared to isogenic controls, we found abnormal neuronal activity in Rett organoids and altered network function based on graph theoretic analyses, with V247X mutations impacting functional responses and connectivity more severely than R306C mutations. These changes paralleled EEG data obtained from patients with comparable mutations. Labeling DLX promoter-driven inhibitory neurons demonstrated differences in activity and functional connectivity of inhibitory and excitatory neurons in the two types of mutation. Transcriptomic analyses revealed HDAC2-associated impairment in R306C organoids and decreased GABAA receptor expression in excitatory neurons in V247X organoids. These findings demonstrate mutation-specific mechanisms of vulnerability in Rett syndrome and suggest targeted strategies for their treatment.
从诱导多能干细胞中提取的人脑器官组织能重现早期发育过程,并揭示涉及神经发育障碍的变化。X连锁甲基CpG结合蛋白2(MECP2)基因突变与Rett综合征有关,疾病的严重程度因突变的位置和类型而异。在这里,我们利用三光子显微镜的钙成像技术分析了两种类型的 MeCP2 突变,一种是错义突变(R306C),另一种是截断突变(V247X)。与同源对照组相比,我们发现Rett器官组织中的神经元活动异常,而且基于图论分析的网络功能也发生了改变,V247X突变对功能反应和连接性的影响比R306C突变更严重。这些变化与从具有类似突变的患者身上获得的脑电图数据一致。标记 DLX 启动子驱动的抑制性神经元表明,两种突变类型的抑制性神经元和兴奋性神经元在活动和功能连接性方面存在差异。转录组分析显示,在R306C器官组织中,HDAC2相关性受损,而在V247X器官组织中,兴奋性神经元的GABAA受体表达减少。这些发现证明了Rett综合征易感性的突变特异性机制,并提出了有针对性的治疗策略。
{"title":"Early differential impact of MeCP2 mutations on functional networks in Rett syndrome patient-derived human cerebral organoids","authors":"Tatsuya Osaki, Chloe Delepine, Yuma Osako, Devorah Kranz, April R Levin, Charles Nelson, Michela Fagiolini, Mriganka Sur","doi":"10.1101/2024.08.10.607464","DOIUrl":"https://doi.org/10.1101/2024.08.10.607464","url":null,"abstract":"Human cerebral organoids derived from induced pluripotent stem cells can recapture early developmental processes and reveal changes involving neurodevelopmental disorders. Mutations in the X linked methyl CpG binding protein 2 (MECP2) gene are associated with Rett syndrome, and disease severity varies depending on the location and type of mutation. Here, we focused on neuronal activity in Rett syndrome patient-derived organoids, analyzing two types of MeCP2 mutations a missense mutation (R306C) and a truncating mutation (V247X) using calcium imaging with three-photon microscopy. Compared to isogenic controls, we found abnormal neuronal activity in Rett organoids and altered network function based on graph theoretic analyses, with V247X mutations impacting functional responses and connectivity more severely than R306C mutations. These changes paralleled EEG data obtained from patients with comparable mutations. Labeling DLX promoter-driven inhibitory neurons demonstrated differences in activity and functional connectivity of inhibitory and excitatory neurons in the two types of mutation. Transcriptomic analyses revealed HDAC2-associated impairment in R306C organoids and decreased GABAA receptor expression in excitatory neurons in V247X organoids. These findings demonstrate mutation-specific mechanisms of vulnerability in Rett syndrome and suggest targeted strategies for their treatment.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporally Programmed Release of Aptamer Tethered Dual Angiogenic Growth Factors 时空程序化释放系链双血管生成生长因子
Pub Date : 2024-08-09 DOI: 10.1101/2024.08.08.607163
Deepti Rana, Jeroen Rouwkema
In tissue extracellular matrix (ECM), multiple growth factors (GFs) are sequestered through affinity interactions and released as needed by proteases, establishing spatial morphogen gradients in a time-controlled manner to guide cell behavior. Inspired by these ECM characteristics, we developed an intelligent biomaterial platform that spatially controls the combined bioavailability of multiple angiogenic GFs, specifically vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-BB). Utilizing aptamer affinity interactions and complementary sequences within a GelMA matrix, our platform achieves on-demand, triggered release of individual GFs which can be programmed in temporally-controlled, repeatable cycles. The platform features stable incorporation of dual aptamers specific for both GFs, functional aptamer-CS molecular recognition in a 3D microenvironment with long-term stability of at least 15 days at physiological temperature, and spatially localized sequestration of individual GFs. Additionally, the system allows differential amounts of GFs to be released from the same hydrogels at different time-points, mimicking dynamic GF presentation in a 3D matrix similar to the native ECM. This flexible control over individual GF release kinetics opens new possibilities for dynamic GF presentation, with adjustable release profiles to meet the spatiotemporal needs of growing engineered tissue.
在组织细胞外基质(ECM)中,多种生长因子(GFs)通过亲和性相互作用被封存,并在蛋白酶的作用下按需释放,从而以时间可控的方式建立空间形态发生梯度,引导细胞行为。受这些 ECM 特性的启发,我们开发了一种智能生物材料平台,它能在空间上控制多种血管生成 GFs(特别是血管内皮生长因子(VEGF)和血小板衍生生长因子(PDGF-BB))的综合生物利用率。我们的平台利用 GelMA 基质中的适配体亲和力相互作用和互补序列,实现了按需触发释放单个 GFs,并可按时间控制的可重复周期进行编程。该平台的特点包括:稳定地加入两种 GF 的特异性双适配体、在三维微环境中实现功能性适配体-CS 分子识别(在生理温度下至少可保持 15 天的长期稳定性)以及对单个 GF 进行空间定位封存。此外,该系统还能在不同时间点从同一水凝胶中释放不同数量的 GF,模拟 GF 在类似于原生 ECM 的三维基质中的动态呈现。这种对单个 GF 释放动力学的灵活控制为动态 GF 呈现开辟了新的可能性,可调节的释放曲线可满足生长中的工程组织的时空需求。
{"title":"Spatiotemporally Programmed Release of Aptamer Tethered Dual Angiogenic Growth Factors","authors":"Deepti Rana, Jeroen Rouwkema","doi":"10.1101/2024.08.08.607163","DOIUrl":"https://doi.org/10.1101/2024.08.08.607163","url":null,"abstract":"In tissue extracellular matrix (ECM), multiple growth factors (GFs) are sequestered through affinity interactions and released as needed by proteases, establishing spatial morphogen gradients in a time-controlled manner to guide cell behavior. Inspired by these ECM characteristics, we developed an intelligent biomaterial platform that spatially controls the combined bioavailability of multiple angiogenic GFs, specifically vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-BB). Utilizing aptamer affinity interactions and complementary sequences within a GelMA matrix, our platform achieves on-demand, triggered release of individual GFs which can be programmed in temporally-controlled, repeatable cycles. The platform features stable incorporation of dual aptamers specific for both GFs, functional aptamer-CS molecular recognition in a 3D microenvironment with long-term stability of at least 15 days at physiological temperature, and spatially localized sequestration of individual GFs. Additionally, the system allows differential amounts of GFs to be released from the same hydrogels at different time-points, mimicking dynamic GF presentation in a 3D matrix similar to the native ECM. This flexible control over individual GF release kinetics opens new possibilities for dynamic GF presentation, with adjustable release profiles to meet the spatiotemporal needs of growing engineered tissue.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyoid bone position and upper airway patency: A computational finite element modeling study 舌骨位置与上气道通畅:计算有限元模型研究
Pub Date : 2024-08-09 DOI: 10.1101/2024.08.09.607294
Diane Salman, Jason Amatoury
Background and Objectives: The hyoid bone's inferior baseline position in obstructive sleep apnea (OSA) has led to surgical hyoid repositioning treatment, yet outcomes vary widely. The influence of baseline hyoid position (phenotype) and surgical hyoid repositioning on upper airway function remains unclear. We aimed to investigate their impact on the upper airway using computational modeling. Methods: A validated finite element model of the rabbit upper airway was advanced and used to simulate changes in baseline hyoid position and surgical hyoid repositioning, alone and in combination. The hyoid was displaced in cranial, caudal, anterior, anterior-cranial and anterior-caudal directions from 1-4mm. Model outcomes included upper airway collapsibility, measured using closing pressure (Pclose), cross-sectional area (CSA) and soft tissue mechanics (stress and strain). Results: Graded baseline hyoid position increments increased Pclose for all directions, and up to 29-43% at 4mm (relative to the original baseline hyoid position). Anterior-based surgical hyoid repositioning decreased Pclose (~-115% at 4mm) and increased ΔCSA (~+35% at 4mm). Cranial surgical hyoid repositioning decreased ΔPclose (-29%), minimally affecting CSA. Caudal surgical hyoid repositioning increased ΔPclose (+27%) and decreased ΔCSA (-7%). Anterior-cranial and anterior-caudal surgical hyoid repositioning produced the highest stresses and strains. Surgical hyoid repositioning effects on upper airway outcomes were dependent on baseline hyoid position, with more caudal baseline hyoid positions leading to less effective surgeries. Conclusions: Baseline hyoid position (phenotype) and surgical hyoid repositioning both alter upper airway outcomes, with effects dependent on hyoid displacement direction and magnitude. Baseline hyoid position influences the effectiveness of surgical hyoid repositioning in reducing upper airway collapsibility. These findings provide further insights into the hyoid's role in upper airway patency and suggest that considering the hyoid's baseline position and surgical repositioning direction/increment may help improve hyoid surgeries for OSA treatment.
背景和目的:阻塞性睡眠呼吸暂停(OSA)患者的舌骨基线位置较低,这导致了手术舌骨复位治疗,但治疗效果却大相径庭。舌骨基线位置(表型)和手术舌骨复位对上气道功能的影响仍不清楚。我们的目的是利用计算模型研究它们对上气道的影响。方法:采用经过验证的兔上气道有限元模型,模拟舌骨基线位置和手术舌骨复位(单独或联合)的变化。舌骨在头颅、尾部、前方、头颅前方和尾部前方方向的移位幅度为 1-4 毫米。模型结果包括使用关闭压力(Pclose)、横截面积(CSA)和软组织力学(应力和应变)测量的上气道塌陷度。结果:基线舌骨位置的分级递增增加了所有方向的关闭压,在 4 毫米处增加了 29-43%(相对于原始基线舌骨位置)。舌骨前方手术复位降低了Pclose值(4毫米处~-115%),增加了ΔCSA(4毫米处~+35%)。头颅手术舌骨复位降低了ΔPclose(-29%),对CSA的影响很小。舌骨尾部手术复位增加了ΔPclose(+27%),降低了ΔCSA(-7%)。手术舌骨前方-颅骨和前方-尾骨复位产生的应力和应变最大。手术舌骨复位对上气道效果的影响取决于基线舌骨位置,基线舌骨位置越靠后,手术效果越差。结论基线舌骨位置(表型)和手术舌骨复位都会改变上气道预后,其影响取决于舌骨移位的方向和幅度。基线舌骨位置会影响手术舌骨复位在减少上气道塌陷方面的效果。这些发现进一步揭示了舌骨在上气道通畅性中的作用,并表明考虑舌骨的基线位置和手术复位方向/增量可能有助于改善治疗OSA的舌骨手术。
{"title":"Hyoid bone position and upper airway patency: A computational finite element modeling study","authors":"Diane Salman, Jason Amatoury","doi":"10.1101/2024.08.09.607294","DOIUrl":"https://doi.org/10.1101/2024.08.09.607294","url":null,"abstract":"Background and Objectives: The hyoid bone's inferior baseline position in obstructive sleep apnea (OSA) has led to surgical hyoid repositioning treatment, yet outcomes vary widely. The influence of baseline hyoid position (phenotype) and surgical hyoid repositioning on upper airway function remains unclear. We aimed to investigate their impact on the upper airway using computational modeling. Methods: A validated finite element model of the rabbit upper airway was advanced and used to simulate changes in baseline hyoid position and surgical hyoid repositioning, alone and in combination. The hyoid was displaced in cranial, caudal, anterior, anterior-cranial and anterior-caudal directions from 1-4mm. Model outcomes included upper airway collapsibility, measured using closing pressure (Pclose), cross-sectional area (CSA) and soft tissue mechanics (stress and strain). Results: Graded baseline hyoid position increments increased Pclose for all directions, and up to 29-43% at 4mm (relative to the original baseline hyoid position). Anterior-based surgical hyoid repositioning decreased Pclose (~-115% at 4mm) and increased ΔCSA (~+35% at 4mm). Cranial surgical hyoid repositioning decreased ΔPclose (-29%), minimally affecting CSA. Caudal surgical hyoid repositioning increased ΔPclose (+27%) and decreased ΔCSA (-7%). Anterior-cranial and anterior-caudal surgical hyoid repositioning produced the highest stresses and strains. Surgical hyoid repositioning effects on upper airway outcomes were dependent on baseline hyoid position, with more caudal baseline hyoid positions leading to less effective surgeries. Conclusions: Baseline hyoid position (phenotype) and surgical hyoid repositioning both alter upper airway outcomes, with effects dependent on hyoid displacement direction and magnitude. Baseline hyoid position influences the effectiveness of surgical hyoid repositioning in reducing upper airway collapsibility. These findings provide further insights into the hyoid's role in upper airway patency and suggest that considering the hyoid's baseline position and surgical repositioning direction/increment may help improve hyoid surgeries for OSA treatment.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141941602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
bioRxiv - Bioengineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1