Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ad973d
S. Rest, A. Rest, C. D. Kilpatrick, J. E. Jencson, S. von Coelln, L. Strolger, S. Smartt, J. P. Anderson, A. Clocchiatti, D. A. Coulter, L. Denneau, S. Gomez, A. Heinze, R. Ridden-Harper, K. W. Smith, B. Stalder, J. L. Tonry, Q. Wang and Y. Zenati
In an effort to search for faint sources of emission over arbitrary timescales, we present a novel method for analyzing forced photometry light curves in difference imaging from optical surveys. Our method “ATLAS Clean,” or ATClean, utilizes the reported fluxes, uncertainties, and fits to the point-spread function (PSF) from difference images to quantify the statistical significance of individual measurements. We apply this method to control light curves across the image to determine whether any source of flux is present in the data for a range of specific timescales. From ATLAS o-band imaging at the site of the Type II supernova (SN) 2023ixf in M101 from 2015–2023, we show that this method accurately reproduces the 3σ flux limits produced from other, more computationally expensive methods. We derive limits for emission on timescales of 5 days and 80–300 days at the site of SN 2023ixf, which are 19.8 and 21.3 mag, respectively. The latter limits rule out variability for unextinguished red supergiants with initial masses >22 M⊙, comparable to the most luminous predictions for the SN 2023ixf progenitor system. We also compare our limits to short-timescale outbursts, similar to those expected for Type IIn SN progenitor stars or the Type II SN 2020tlf, and rule out outburst ejecta masses of >0.021 M⊙, much lower than the inferred mass of circumstellar matter around SN 2023ixf in the literature. In the future, these methods can be applied to any forced photometry on difference imaging from other surveys, such as Rubin optical imaging.
{"title":"ATClean: A Novel Method for Detecting Low-luminosity Transients and Application to Pre-explosion Counterparts from SN 2023ixf","authors":"S. Rest, A. Rest, C. D. Kilpatrick, J. E. Jencson, S. von Coelln, L. Strolger, S. Smartt, J. P. Anderson, A. Clocchiatti, D. A. Coulter, L. Denneau, S. Gomez, A. Heinze, R. Ridden-Harper, K. W. Smith, B. Stalder, J. L. Tonry, Q. Wang and Y. Zenati","doi":"10.3847/1538-4357/ad973d","DOIUrl":"https://doi.org/10.3847/1538-4357/ad973d","url":null,"abstract":"In an effort to search for faint sources of emission over arbitrary timescales, we present a novel method for analyzing forced photometry light curves in difference imaging from optical surveys. Our method “ATLAS Clean,” or ATClean, utilizes the reported fluxes, uncertainties, and fits to the point-spread function (PSF) from difference images to quantify the statistical significance of individual measurements. We apply this method to control light curves across the image to determine whether any source of flux is present in the data for a range of specific timescales. From ATLAS o-band imaging at the site of the Type II supernova (SN) 2023ixf in M101 from 2015–2023, we show that this method accurately reproduces the 3σ flux limits produced from other, more computationally expensive methods. We derive limits for emission on timescales of 5 days and 80–300 days at the site of SN 2023ixf, which are 19.8 and 21.3 mag, respectively. The latter limits rule out variability for unextinguished red supergiants with initial masses >22 M⊙, comparable to the most luminous predictions for the SN 2023ixf progenitor system. We also compare our limits to short-timescale outbursts, similar to those expected for Type IIn SN progenitor stars or the Type II SN 2020tlf, and rule out outburst ejecta masses of >0.021 M⊙, much lower than the inferred mass of circumstellar matter around SN 2023ixf in the literature. In the future, these methods can be applied to any forced photometry on difference imaging from other surveys, such as Rubin optical imaging.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ad8f3f
Emma R. Beasor, Nathan Smith and Jacob E. Jencson
Analysis of pre-explosion imaging has confirmed red supergiants (RSGs) as the progenitors to Type II-P supernovae (SNe). However, extracting an RSG's luminosity requires assumptions regarding the star’s temperature or spectral type and the corresponding bolometric correction, circumstellar extinction, and possible variability. The robustness of these assumptions is difficult to test since we cannot go back in time and obtain additional pre-explosion imaging. Here, we perform a simple test using the RSGs in M31, which have been well observed from optical to mid-IR. We ask the following: By treating each star as if we only had single-band photometry and making assumptions typically used in SN progenitor studies, what bolometric luminosity would we infer for each star? How close is this to the bolometric luminosity for that same star inferred from the full optical-to-IR spectral energy distribution (SED)? We find common assumptions adopted in progenitor studies systematically underestimate the bolometric luminosity by a factor of 2, typically leading to inferred progenitor masses that are systematically too low. Additionally, we find a much larger spread in luminosity derived from single-filter photometry compared to SED-derived luminosities, indicating uncertainties in progenitor luminosities are also underestimated. When these corrections and larger uncertainties are included in the analysis, even the most luminous known RSGs are not ruled out at the 3σ level, indicating there is currently no statistically significant evidence that the most luminous RSGs are missing from the observed sample of II-P progenitors. The proposed correction also alleviates the problem of having progenitors with masses below the expected lower-mass bound for core collapse.
{"title":"The Red Supergiant Progenitor Luminosity Problem","authors":"Emma R. Beasor, Nathan Smith and Jacob E. Jencson","doi":"10.3847/1538-4357/ad8f3f","DOIUrl":"https://doi.org/10.3847/1538-4357/ad8f3f","url":null,"abstract":"Analysis of pre-explosion imaging has confirmed red supergiants (RSGs) as the progenitors to Type II-P supernovae (SNe). However, extracting an RSG's luminosity requires assumptions regarding the star’s temperature or spectral type and the corresponding bolometric correction, circumstellar extinction, and possible variability. The robustness of these assumptions is difficult to test since we cannot go back in time and obtain additional pre-explosion imaging. Here, we perform a simple test using the RSGs in M31, which have been well observed from optical to mid-IR. We ask the following: By treating each star as if we only had single-band photometry and making assumptions typically used in SN progenitor studies, what bolometric luminosity would we infer for each star? How close is this to the bolometric luminosity for that same star inferred from the full optical-to-IR spectral energy distribution (SED)? We find common assumptions adopted in progenitor studies systematically underestimate the bolometric luminosity by a factor of 2, typically leading to inferred progenitor masses that are systematically too low. Additionally, we find a much larger spread in luminosity derived from single-filter photometry compared to SED-derived luminosities, indicating uncertainties in progenitor luminosities are also underestimated. When these corrections and larger uncertainties are included in the analysis, even the most luminous known RSGs are not ruled out at the 3σ level, indicating there is currently no statistically significant evidence that the most luminous RSGs are missing from the observed sample of II-P progenitors. The proposed correction also alleviates the problem of having progenitors with masses below the expected lower-mass bound for core collapse.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ad9b7a
Nicholas P. Ballering, L. Ilsedore Cleeves, Ryan D. Boyden, Mark J. McCaughrean, Rachel E. Gross and Samuel G. Pearson
We examine images of the protoplanetary disk 114–426 with JWST/NIRCam in 12 bands. This large disk is oriented edge on with a dark midplane flanked by lobes of scattered light. The outer edges of the midplane are seen in silhouette against the Orion Nebula, providing a unique opportunity to study planet-forming material in absorption. We discover a dip in the scattered light of the disk at 3 μm—compelling evidence for the presence of water ice. The 3 μm dip is also seen in the silhouette of the disk, where we quantify the ice abundance with models of pure absorption and avoid the complications of disk scattering effects. We find grain ice-to-refractory mass ratios of up to ~0.2, maximum grain sizes of 0.25–5 μm, and a total dust plus ice mass of 0.46 M⊕ in the silhouette region. We also discover excess absorption in the NIRCam bands that include the Paα line, suggesting there may be excited atomic hydrogen in the disk. Examining the morphology of the scattered light lobes reveals that they are laterally offset from each other and exhibit a brightness asymmetry that flips with wavelength—both evidence for a tilted inner disk in this system.
{"title":"Water Ice in the Edge-on Orion Silhouette Disk 114–426 from JWST NIRCam Images","authors":"Nicholas P. Ballering, L. Ilsedore Cleeves, Ryan D. Boyden, Mark J. McCaughrean, Rachel E. Gross and Samuel G. Pearson","doi":"10.3847/1538-4357/ad9b7a","DOIUrl":"https://doi.org/10.3847/1538-4357/ad9b7a","url":null,"abstract":"We examine images of the protoplanetary disk 114–426 with JWST/NIRCam in 12 bands. This large disk is oriented edge on with a dark midplane flanked by lobes of scattered light. The outer edges of the midplane are seen in silhouette against the Orion Nebula, providing a unique opportunity to study planet-forming material in absorption. We discover a dip in the scattered light of the disk at 3 μm—compelling evidence for the presence of water ice. The 3 μm dip is also seen in the silhouette of the disk, where we quantify the ice abundance with models of pure absorption and avoid the complications of disk scattering effects. We find grain ice-to-refractory mass ratios of up to ~0.2, maximum grain sizes of 0.25–5 μm, and a total dust plus ice mass of 0.46 M⊕ in the silhouette region. We also discover excess absorption in the NIRCam bands that include the Paα line, suggesting there may be excited atomic hydrogen in the disk. Examining the morphology of the scattered light lobes reveals that they are laterally offset from each other and exhibit a brightness asymmetry that flips with wavelength—both evidence for a tilted inner disk in this system.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ad9d0f
Yang Gao, Enci Wang, Qing-Hua Tan, Timothy A. Davis, Fu-Heng Liang, Xue-Jian Jiang, Ning Gai, Qian Jiao, DongDong Shi, Shuai Feng, Yanke Tang, Shijie Li and Yi-Fan Wang
We present the analysis of a comprehensive sample of 352 early-type galaxies using public data, to investigate the correlations between CO luminosities and mid-infrared luminosities observed by Wide-field Infrared Survey Explorer. We find strong correlations between both CO (1–0) and CO (2–1) luminosities and 12 μm luminosity, boasting a correlation coefficient greater than 0.9 and an intrinsic scatter smaller than 0.1 dex. The consistent slopes observed for the relationships of CO (1–0) and CO (2–1) suggest that the line ratio R21 lacks correlation with mid-infrared emission in early-type galaxies, which is significantly different from star-forming galaxies. Moreover, the slopes of LCO(1−0)–L12 μm and LCO(2−1)–L12 μm relations in early-type galaxies are steeper than those observed in star-forming galaxies. Given the absence of correlation with color, morphology, or specific star formation rate (sSFR), the correlation between deviations and the molecular gas mass surface density could be eliminated by correcting the possible 12 μm emission from old stars or adopting a systematically different αCO. The latter, on average, is equivalent to adding a constant CO brightness density, specifically and for CO (1–0) and (2–1), respectively. These explorations will serve as useful tools for estimating the molecular gas content in gas-poor galaxies and understanding associated quenching processes.
{"title":"The First Exploration of the Correlations Between WISE 12 μm and CO Emission in Early-type Galaxies","authors":"Yang Gao, Enci Wang, Qing-Hua Tan, Timothy A. Davis, Fu-Heng Liang, Xue-Jian Jiang, Ning Gai, Qian Jiao, DongDong Shi, Shuai Feng, Yanke Tang, Shijie Li and Yi-Fan Wang","doi":"10.3847/1538-4357/ad9d0f","DOIUrl":"https://doi.org/10.3847/1538-4357/ad9d0f","url":null,"abstract":"We present the analysis of a comprehensive sample of 352 early-type galaxies using public data, to investigate the correlations between CO luminosities and mid-infrared luminosities observed by Wide-field Infrared Survey Explorer. We find strong correlations between both CO (1–0) and CO (2–1) luminosities and 12 μm luminosity, boasting a correlation coefficient greater than 0.9 and an intrinsic scatter smaller than 0.1 dex. The consistent slopes observed for the relationships of CO (1–0) and CO (2–1) suggest that the line ratio R21 lacks correlation with mid-infrared emission in early-type galaxies, which is significantly different from star-forming galaxies. Moreover, the slopes of LCO(1−0)–L12 μm and LCO(2−1)–L12 μm relations in early-type galaxies are steeper than those observed in star-forming galaxies. Given the absence of correlation with color, morphology, or specific star formation rate (sSFR), the correlation between deviations and the molecular gas mass surface density could be eliminated by correcting the possible 12 μm emission from old stars or adopting a systematically different αCO. The latter, on average, is equivalent to adding a constant CO brightness density, specifically and for CO (1–0) and (2–1), respectively. These explorations will serve as useful tools for estimating the molecular gas content in gas-poor galaxies and understanding associated quenching processes.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ada0be
A. Kouloumvakos, N. Wijsen, I. C. Jebaraj, A. Afanasiev, D. Lario, C. M. S. Cohen, P. Riley, D. G. Mitchell, Z. Ding, A. Vourlidas, J. Giacalone, X. Chen and M. E. Hill
On 2022 September 5, during Parker Solar Probe's (PSP) 13th encounter, a fast shock wave and a related solar energetic particle (SEP) event were observed as the spacecraft approached the perihelion of its orbit. Observations from the Integrated Science Investigation of the Sun (IS⊙IS) instrument suite show that SEPs arrived at the spacecraft with a significant delay from the onset of the parent solar eruption and that the first arriving SEPs exhibited an inverse velocity dispersion (IVD) for energetic protons above ~1 MeV. Utilizing data from multiple spacecraft, we investigate the eruption dynamics and shock wave propagation. Our analysis includes 3D shock modeling and SEP transport simulations to examine the origins of this SEP event and explore the causes of the delayed SEP onset and the observed IVD. The data-driven SEP simulation reproduces the SEP event onset observed at PSP, its evolving energy spectrum, and the IVD. This IVD is attributed to a relatively slow, ongoing particle acceleration process occurring at the flank of the expanding shock wave intercepted by PSP. This has significant implications for the role of shocks in the release of SEPs at widespread events and for methods used to infer the SEP release times. Furthermore, the match between the simulation and observations worsens when cross-field diffusion is considered, indicating that SEP diffusion had a minor effect on this event. These findings underscore the complexity of SEP events and emphasize the need for advanced modeling approaches to better understand the role of shock waves and other physical processes in SEP acceleration and release.
{"title":"Shock and SEP Modeling Study for the 2022 September 5 SEP Event","authors":"A. Kouloumvakos, N. Wijsen, I. C. Jebaraj, A. Afanasiev, D. Lario, C. M. S. Cohen, P. Riley, D. G. Mitchell, Z. Ding, A. Vourlidas, J. Giacalone, X. Chen and M. E. Hill","doi":"10.3847/1538-4357/ada0be","DOIUrl":"https://doi.org/10.3847/1538-4357/ada0be","url":null,"abstract":"On 2022 September 5, during Parker Solar Probe's (PSP) 13th encounter, a fast shock wave and a related solar energetic particle (SEP) event were observed as the spacecraft approached the perihelion of its orbit. Observations from the Integrated Science Investigation of the Sun (IS⊙IS) instrument suite show that SEPs arrived at the spacecraft with a significant delay from the onset of the parent solar eruption and that the first arriving SEPs exhibited an inverse velocity dispersion (IVD) for energetic protons above ~1 MeV. Utilizing data from multiple spacecraft, we investigate the eruption dynamics and shock wave propagation. Our analysis includes 3D shock modeling and SEP transport simulations to examine the origins of this SEP event and explore the causes of the delayed SEP onset and the observed IVD. The data-driven SEP simulation reproduces the SEP event onset observed at PSP, its evolving energy spectrum, and the IVD. This IVD is attributed to a relatively slow, ongoing particle acceleration process occurring at the flank of the expanding shock wave intercepted by PSP. This has significant implications for the role of shocks in the release of SEPs at widespread events and for methods used to infer the SEP release times. Furthermore, the match between the simulation and observations worsens when cross-field diffusion is considered, indicating that SEP diffusion had a minor effect on this event. These findings underscore the complexity of SEP events and emphasize the need for advanced modeling approaches to better understand the role of shock waves and other physical processes in SEP acceleration and release.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ad9a6d
Benjamin C. Kaiser, J. Christopher Clemens, Simon Blouin, Erik Dennihy, Patrick Dufour, Ryan J. Hegedus and Joshua S. Reding
The bulk abundances of exoplanetesimals can be measured when they are accreted by white dwarfs. Recently, lithium from the accretion of exoplanetesimals was detected in relatively high levels in multiple white dwarfs. There are presently three proposed hypotheses to explain the detection of excess lithium in white dwarf photospheres: Big Bang and Galactic nucleosynthesis, continental crust, and an exomoon formed from spalled ring material. We present new observations of three previously known lithium-polluted white dwarfs (WD J1824+1213, WD J2317+1830, and LHS 2534), and one with metal pollution without lithium (SDSS J1636+1619). We also present atmospheric model fits to these white dwarfs. We then evaluate the abundances of these white dwarfs and two additional lithium-polluted white dwarfs that were previously fit using the same atmospheric models (WD J1644-0449 and SDSS J1330+6435) in the context of the three extant hypotheses for explaining lithium excesses in polluted white dwarfs. We find Big Bang and Galactic nucleosynthesis to be the most plausible explanation of the abundances in WD J1644-0449, WD J1824+1213, and WD J2317+1830. SDSS J1330+6435 will require stricter abundances to determine its planetesimal’s origins, and LHS 2534, as presently modeled, defies all three hypotheses. We find the accretion of an exomoon formed from spalled ring material to be highly unlikely to be the explanation of the lithium excess in any of these cases.
{"title":"The Origins of Lithium Enhancement in Polluted White Dwarfs","authors":"Benjamin C. Kaiser, J. Christopher Clemens, Simon Blouin, Erik Dennihy, Patrick Dufour, Ryan J. Hegedus and Joshua S. Reding","doi":"10.3847/1538-4357/ad9a6d","DOIUrl":"https://doi.org/10.3847/1538-4357/ad9a6d","url":null,"abstract":"The bulk abundances of exoplanetesimals can be measured when they are accreted by white dwarfs. Recently, lithium from the accretion of exoplanetesimals was detected in relatively high levels in multiple white dwarfs. There are presently three proposed hypotheses to explain the detection of excess lithium in white dwarf photospheres: Big Bang and Galactic nucleosynthesis, continental crust, and an exomoon formed from spalled ring material. We present new observations of three previously known lithium-polluted white dwarfs (WD J1824+1213, WD J2317+1830, and LHS 2534), and one with metal pollution without lithium (SDSS J1636+1619). We also present atmospheric model fits to these white dwarfs. We then evaluate the abundances of these white dwarfs and two additional lithium-polluted white dwarfs that were previously fit using the same atmospheric models (WD J1644-0449 and SDSS J1330+6435) in the context of the three extant hypotheses for explaining lithium excesses in polluted white dwarfs. We find Big Bang and Galactic nucleosynthesis to be the most plausible explanation of the abundances in WD J1644-0449, WD J1824+1213, and WD J2317+1830. SDSS J1330+6435 will require stricter abundances to determine its planetesimal’s origins, and LHS 2534, as presently modeled, defies all three hypotheses. We find the accretion of an exomoon formed from spalled ring material to be highly unlikely to be the explanation of the lithium excess in any of these cases.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ad9baf
Jian Huang, Bin Luo, W. N. Brandt, Ying Chen, Qingling Ni, Yongquan Xue and Zijian Zhang
We present photometric selection of type 1 quasars in the ≈5.3 deg2 XMM-Large Scale Structure survey field with machine learning. We constructed our training and blind-test samples using spectroscopically identified Sloan Digital Sky Survey quasars, galaxies, and stars. We utilized the XGBoost machine learning method to select a total of 1591 quasars. We assessed the classification performance based on the blind-test sample, and the outcome was favorable, demonstrating high reliability (≈99.9%) and good completeness (≈87.5%). We used XGBoost to estimate photometric redshifts of our selected quasars. The estimated photometric redshifts span a range from 0.41 to 3.75. The outlier fraction of these photometric redshift estimates is ≈17%, and the normalized median absolute deviation (σNMAD) is ≈0.07. To study the quasar disk–corona connection, we constructed a subsample of 1016 quasars with Hyper Suprime-Cam i < 22.5 after excluding radio-loud and potentially X-ray-absorbed quasars. The relation between the optical-to-X-ray power-law slope parameter (αOX) and the 2500 Å monochromatic luminosity (L2500Å) for this subsample is with a dispersion of 0.159. We found this correlation in good agreement with the correlations in previous studies. We explored several factors, which may bias the αOX–L2500Å relation, and found that their effects are not significant. We discussed possible evolution of the αOX–L2500Å relation with respect to L2500Å or redshift.
{"title":"Photometric Selection of Type 1 Quasars in the XMM-LSS Field with Machine Learning and the Disk–Corona Connection","authors":"Jian Huang, Bin Luo, W. N. Brandt, Ying Chen, Qingling Ni, Yongquan Xue and Zijian Zhang","doi":"10.3847/1538-4357/ad9baf","DOIUrl":"https://doi.org/10.3847/1538-4357/ad9baf","url":null,"abstract":"We present photometric selection of type 1 quasars in the ≈5.3 deg2 XMM-Large Scale Structure survey field with machine learning. We constructed our training and blind-test samples using spectroscopically identified Sloan Digital Sky Survey quasars, galaxies, and stars. We utilized the XGBoost machine learning method to select a total of 1591 quasars. We assessed the classification performance based on the blind-test sample, and the outcome was favorable, demonstrating high reliability (≈99.9%) and good completeness (≈87.5%). We used XGBoost to estimate photometric redshifts of our selected quasars. The estimated photometric redshifts span a range from 0.41 to 3.75. The outlier fraction of these photometric redshift estimates is ≈17%, and the normalized median absolute deviation (σNMAD) is ≈0.07. To study the quasar disk–corona connection, we constructed a subsample of 1016 quasars with Hyper Suprime-Cam i < 22.5 after excluding radio-loud and potentially X-ray-absorbed quasars. The relation between the optical-to-X-ray power-law slope parameter (αOX) and the 2500 Å monochromatic luminosity (L2500Å) for this subsample is with a dispersion of 0.159. We found this correlation in good agreement with the correlations in previous studies. We explored several factors, which may bias the αOX–L2500Å relation, and found that their effects are not significant. We discussed possible evolution of the αOX–L2500Å relation with respect to L2500Å or redshift.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ad7119
Dominic Adams, Hugh Dickinson, Lucy Fortson, Kameswara Mantha, Vihang Mehta, Jürgen Popp, Claudia Scarlata, Chris Lintott, Brooke Simmons and Mike Walmsley
At the peak of cosmic star formation (1 ≲ z ≲ 2), the majority of star-forming galaxies hosted compact, star-forming clumps, which were responsible for a large fraction of cosmic star formation. By comparison, ≲5% of local star-forming galaxies host comparable clumps. In this work, we investigate the link between the environmental conditions surrounding local (z < 0.04) galaxies and the prevalence of clumps in these galaxies. To obtain our clump sample, we use a Faster R-CNN object detection network trained on the catalog of clump labels provided by the Galaxy Zoo: Clump Scout project, then apply this network to detect clumps in approximately 240,000 Sloan Digital Sky Survey galaxies (originally selected for Galaxy Zoo 2). The resulting sample of 41,445 u-band bright clumps in 34,246 galaxies is the largest sample of clumps yet assembled. We then select a volume-limited sample of 9964 galaxies and estimate the density of their local environment using the distance to their projected fifth nearest neighbor. We find a robust correlation between environment and the clumpy fraction (fclumpy) for star-forming galaxies (specific star formation rate, sSFR > 10−2 Gyr−1) but find little to no relationship when controlling for galaxies’ sSFR or color. Further, fclumpy increases significantly with sSFR in local galaxies, particularly above sSFR > 10−1 Gyr−1. We posit that a galaxy’s gas fraction primarily controls the formation and lifetime of its clumps, and that environmental interactions play a smaller role.
{"title":"The Prevalence of Star-forming Clumps as a Function of Environmental Overdensity in Local Galaxies","authors":"Dominic Adams, Hugh Dickinson, Lucy Fortson, Kameswara Mantha, Vihang Mehta, Jürgen Popp, Claudia Scarlata, Chris Lintott, Brooke Simmons and Mike Walmsley","doi":"10.3847/1538-4357/ad7119","DOIUrl":"https://doi.org/10.3847/1538-4357/ad7119","url":null,"abstract":"At the peak of cosmic star formation (1 ≲ z ≲ 2), the majority of star-forming galaxies hosted compact, star-forming clumps, which were responsible for a large fraction of cosmic star formation. By comparison, ≲5% of local star-forming galaxies host comparable clumps. In this work, we investigate the link between the environmental conditions surrounding local (z < 0.04) galaxies and the prevalence of clumps in these galaxies. To obtain our clump sample, we use a Faster R-CNN object detection network trained on the catalog of clump labels provided by the Galaxy Zoo: Clump Scout project, then apply this network to detect clumps in approximately 240,000 Sloan Digital Sky Survey galaxies (originally selected for Galaxy Zoo 2). The resulting sample of 41,445 u-band bright clumps in 34,246 galaxies is the largest sample of clumps yet assembled. We then select a volume-limited sample of 9964 galaxies and estimate the density of their local environment using the distance to their projected fifth nearest neighbor. We find a robust correlation between environment and the clumpy fraction (fclumpy) for star-forming galaxies (specific star formation rate, sSFR > 10−2 Gyr−1) but find little to no relationship when controlling for galaxies’ sSFR or color. Further, fclumpy increases significantly with sSFR in local galaxies, particularly above sSFR > 10−1 Gyr−1. We posit that a galaxy’s gas fraction primarily controls the formation and lifetime of its clumps, and that environmental interactions play a smaller role.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ada1d5
Nadine H. Soliman and Philip F. Hopkins
Numerous stars exhibit surprisingly large variations in their refractory element abundances, often interpreted as signatures of planetary ingestion events. In this study, we propose that differences in the dust-to-gas ratio near stars during their formation can produce similar observational signals. We investigate this hypothesis using a suite of radiation-dust-magnetohydrodynamic STAR FORmation in Gaseous Environments (or STARFORGE) simulations of star formation. Our results show that the distribution of refractory abundance variations (Δ[X/H]) has extended tails, with about 10%–30% of all stars displaying variations around ∼0.1 dex. These variations are comparable to the accretion of 2–5 M⊕ of planetary material into the convective zones of Sun-like stars. The width of the distributions increases with the incorporation of more detailed dust physics, such as radiation pressure and back-reaction forces, as well as with larger dust grain sizes and finer resolutions. Furthermore, our simulations reveal no correlation between Δ[X/H] and stellar separations, suggesting that dust-to-gas fluctuations likely occur on scales smaller than those of wide binaries. These findings highlight the importance of considering dust dynamics as a potential source of the observed chemical enrichment in stars.
{"title":"Are Stars Really Ingesting Their Planets? Examining an Alternative Explanation","authors":"Nadine H. Soliman and Philip F. Hopkins","doi":"10.3847/1538-4357/ada1d5","DOIUrl":"https://doi.org/10.3847/1538-4357/ada1d5","url":null,"abstract":"Numerous stars exhibit surprisingly large variations in their refractory element abundances, often interpreted as signatures of planetary ingestion events. In this study, we propose that differences in the dust-to-gas ratio near stars during their formation can produce similar observational signals. We investigate this hypothesis using a suite of radiation-dust-magnetohydrodynamic STAR FORmation in Gaseous Environments (or STARFORGE) simulations of star formation. Our results show that the distribution of refractory abundance variations (Δ[X/H]) has extended tails, with about 10%–30% of all stars displaying variations around ∼0.1 dex. These variations are comparable to the accretion of 2–5 M⊕ of planetary material into the convective zones of Sun-like stars. The width of the distributions increases with the incorporation of more detailed dust physics, such as radiation pressure and back-reaction forces, as well as with larger dust grain sizes and finer resolutions. Furthermore, our simulations reveal no correlation between Δ[X/H] and stellar separations, suggesting that dust-to-gas fluctuations likely occur on scales smaller than those of wide binaries. These findings highlight the importance of considering dust dynamics as a potential source of the observed chemical enrichment in stars.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.3847/1538-4357/ad9f36
Geoffrey Mo, Carl-Johan Haster and Erik Katsavounidis
A major challenge in gravitational-wave (GW) multimessenger astrophysics is the imprecise localization of GW compact binary mergers. We investigate the use of a method to include galaxy catalog information in performing parameter estimation of these events. We test its effectiveness with the GW events GW170817, GW190425, and GW190814, as well as with simulated binary neutron star mergers. For GW170817, we recover the true host galaxy as the most probable galaxy after a straightforward mass reweighting, with significantly decreased localization area and volume. On the simulated sample, however, we do not find improvement compared to performing a simple galaxy catalog crossmatch with a regular GW localization. Future investigations into sampling methods may yield improvements that increase the viability of this method.
{"title":"On the Use of Galaxy Catalogs in Gravitational-wave Parameter Estimation","authors":"Geoffrey Mo, Carl-Johan Haster and Erik Katsavounidis","doi":"10.3847/1538-4357/ad9f36","DOIUrl":"https://doi.org/10.3847/1538-4357/ad9f36","url":null,"abstract":"A major challenge in gravitational-wave (GW) multimessenger astrophysics is the imprecise localization of GW compact binary mergers. We investigate the use of a method to include galaxy catalog information in performing parameter estimation of these events. We test its effectiveness with the GW events GW170817, GW190425, and GW190814, as well as with simulated binary neutron star mergers. For GW170817, we recover the true host galaxy as the most probable galaxy after a straightforward mass reweighting, with significantly decreased localization area and volume. On the simulated sample, however, we do not find improvement compared to performing a simple galaxy catalog crossmatch with a regular GW localization. Future investigations into sampling methods may yield improvements that increase the viability of this method.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}