We construct counterexamples to inverse problems for the wave operator on domains in begin{document}$ mathbb{R}^{n+1} $end{document}, begin{document}$ n ge 2 $end{document}, and on Lorentzian manifolds. We show that non-isometric Lorentzian metrics can lead to same partial data measurements, which are formulated in terms certain restrictions of the Dirichlet-to-Neumann map. The Lorentzian metrics giving counterexamples are time-dependent, but they are smooth and non-degenerate. On begin{document}$ mathbb{R}^{n+1} $end{document} the metrics are conformal to the Minkowski metric.
We construct counterexamples to inverse problems for the wave operator on domains in begin{document}$ mathbb{R}^{n+1} $end{document}, begin{document}$ n ge 2 $end{document}, and on Lorentzian manifolds. We show that non-isometric Lorentzian metrics can lead to same partial data measurements, which are formulated in terms certain restrictions of the Dirichlet-to-Neumann map. The Lorentzian metrics giving counterexamples are time-dependent, but they are smooth and non-degenerate. On begin{document}$ mathbb{R}^{n+1} $end{document} the metrics are conformal to the Minkowski metric.
{"title":"Counterexamples to inverse problems for the wave equation","authors":"Tony Liimatainen, L. Oksanen","doi":"10.3934/ipi.2021058","DOIUrl":"https://doi.org/10.3934/ipi.2021058","url":null,"abstract":"<p style='text-indent:20px;'>We construct counterexamples to inverse problems for the wave operator on domains in <inline-formula><tex-math id=\"M1\">begin{document}$ mathbb{R}^{n+1} $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">begin{document}$ n ge 2 $end{document}</tex-math></inline-formula>, and on Lorentzian manifolds. We show that non-isometric Lorentzian metrics can lead to same partial data measurements, which are formulated in terms certain restrictions of the Dirichlet-to-Neumann map. The Lorentzian metrics giving counterexamples are time-dependent, but they are smooth and non-degenerate. On <inline-formula><tex-math id=\"M3\">begin{document}$ mathbb{R}^{n+1} $end{document}</tex-math></inline-formula> the metrics are conformal to the Minkowski metric.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90580032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Garc'ia-Ferrero, Angkana Ruland, Wiktoria Zato'n
In this article, we discuss quantitative Runge approximation properties for the acoustic Helmholtz equation and prove stability improvement results in the high frequency limit for an associated partial data inverse problem modelled on [3,35]. The results rely on quantitative unique continuation estimates in suitable function spaces with explicit frequency dependence. We contrast the frequency dependence of interior Runge approximation results from non-convex and convex sets.
{"title":"Runge approximation and stability improvement for a partial data Calderón problem for the acoustic Helmholtz equation","authors":"M. Garc'ia-Ferrero, Angkana Ruland, Wiktoria Zato'n","doi":"10.3934/ipi.2021049","DOIUrl":"https://doi.org/10.3934/ipi.2021049","url":null,"abstract":"<p style='text-indent:20px;'>In this article, we discuss quantitative Runge approximation properties for the acoustic Helmholtz equation and prove stability improvement results in the high frequency limit for an associated partial data inverse problem modelled on [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>,<xref ref-type=\"bibr\" rid=\"b35\">35</xref>]. The results rely on quantitative unique continuation estimates in suitable function spaces with explicit frequency dependence. We contrast the frequency dependence of interior Runge approximation results from non-convex and convex sets.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90274252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The subject of this work concerns the classical direct and inverse scattering problems for quasi-linear perturbations of the two-dimensional biharmonic operator. The quasi-linear perturbations of the first and zero order might be complex-valued and singular. We show the existence of the scattering solutions to the direct scattering problem in the Sobolev space begin{document}$ W^1_{infty}( mathbb{{R}}^2) $end{document}. Then the inverse scattering problem can be formulated as follows: does the knowledge of the far field pattern uniquely determine the unknown coefficients for given differential operator? It turns out that the answer to this classical question is affirmative for quasi-linear perturbations of the biharmonic operator. Moreover, we present a numerical method for the reconstruction of unknown coefficients, which from the practical point of view can be thought of as recovery of the coefficients from fixed energy measurements.
The subject of this work concerns the classical direct and inverse scattering problems for quasi-linear perturbations of the two-dimensional biharmonic operator. The quasi-linear perturbations of the first and zero order might be complex-valued and singular. We show the existence of the scattering solutions to the direct scattering problem in the Sobolev space begin{document}$ W^1_{infty}( mathbb{{R}}^2) $end{document}. Then the inverse scattering problem can be formulated as follows: does the knowledge of the far field pattern uniquely determine the unknown coefficients for given differential operator? It turns out that the answer to this classical question is affirmative for quasi-linear perturbations of the biharmonic operator. Moreover, we present a numerical method for the reconstruction of unknown coefficients, which from the practical point of view can be thought of as recovery of the coefficients from fixed energy measurements.
{"title":"Two-dimensional inverse scattering for quasi-linear biharmonic operator","authors":"M. Harju, Jaakko Kultima, V. Serov, Teemu Tyni","doi":"10.3934/IPI.2021026","DOIUrl":"https://doi.org/10.3934/IPI.2021026","url":null,"abstract":"The subject of this work concerns the classical direct and inverse scattering problems for quasi-linear perturbations of the two-dimensional biharmonic operator. The quasi-linear perturbations of the first and zero order might be complex-valued and singular. We show the existence of the scattering solutions to the direct scattering problem in the Sobolev space begin{document}$ W^1_{infty}( mathbb{{R}}^2) $end{document}. Then the inverse scattering problem can be formulated as follows: does the knowledge of the far field pattern uniquely determine the unknown coefficients for given differential operator? It turns out that the answer to this classical question is affirmative for quasi-linear perturbations of the biharmonic operator. Moreover, we present a numerical method for the reconstruction of unknown coefficients, which from the practical point of view can be thought of as recovery of the coefficients from fixed energy measurements.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72905842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We develop new efficient algorithms for a class of inverse problems of gravimetry to recover an anomalous volume mass distribution (measure) in the sense that we design fast local level-set methods to simultaneously reconstruct both unknown domain and varying density of the anomalous measure from modulus of gravity force rather than from gravity force itself. The equivalent-source principle of gravitational potential forces us to consider only measures of the form begin{document}$ mu = f,chi_{D} $end{document} , where begin{document}$ f $end{document} is a density function and begin{document}$ D $end{document} is a domain inside a closed set in begin{document}$ bf{R}^n $end{document} . Accordingly, various constraints are imposed upon both the density function and the domain so that well-posedness theories can be developed for the corresponding inverse problems, such as the domain inverse problem, the density inverse problem, and the domain-density inverse problem. Starting from uniqueness theorems for the domain-density inverse problem, we derive a new gradient from the misfit functional to enforce the directional-independence constraint of the density function and we further introduce a new labeling function into the level-set method to enforce the geometrical constraint of the corresponding domain; consequently, we are able to recover simultaneously both unknown domain and varying density from given modulus of gravity force. Our fast level-set method is built upon localizing the level-set evolution around a narrow band near the zero level-set and upon accelerating numerical modeling by novel low-rank matrix multiplication. Numerical results demonstrate that uniqueness theorems are crucial for solving the inverse problem of gravimetry and will be impactful on gravity prospecting. To the best of our knowledge, our inversion algorithm is the first of such for the domain-density inverse problem since it is based upon the conditional well-posedness theory of the inverse problem.
We develop new efficient algorithms for a class of inverse problems of gravimetry to recover an anomalous volume mass distribution (measure) in the sense that we design fast local level-set methods to simultaneously reconstruct both unknown domain and varying density of the anomalous measure from modulus of gravity force rather than from gravity force itself. The equivalent-source principle of gravitational potential forces us to consider only measures of the form begin{document}$ mu = f,chi_{D} $end{document} , where begin{document}$ f $end{document} is a density function and begin{document}$ D $end{document} is a domain inside a closed set in begin{document}$ bf{R}^n $end{document} . Accordingly, various constraints are imposed upon both the density function and the domain so that well-posedness theories can be developed for the corresponding inverse problems, such as the domain inverse problem, the density inverse problem, and the domain-density inverse problem. Starting from uniqueness theorems for the domain-density inverse problem, we derive a new gradient from the misfit functional to enforce the directional-independence constraint of the density function and we further introduce a new labeling function into the level-set method to enforce the geometrical constraint of the corresponding domain; consequently, we are able to recover simultaneously both unknown domain and varying density from given modulus of gravity force. Our fast level-set method is built upon localizing the level-set evolution around a narrow band near the zero level-set and upon accelerating numerical modeling by novel low-rank matrix multiplication. Numerical results demonstrate that uniqueness theorems are crucial for solving the inverse problem of gravimetry and will be impactful on gravity prospecting. To the best of our knowledge, our inversion algorithm is the first of such for the domain-density inverse problem since it is based upon the conditional well-posedness theory of the inverse problem.
{"title":"Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods","authors":"Wenbin Li, J. Qian","doi":"10.3934/ipi.2020073","DOIUrl":"https://doi.org/10.3934/ipi.2020073","url":null,"abstract":"We develop new efficient algorithms for a class of inverse problems of gravimetry to recover an anomalous volume mass distribution (measure) in the sense that we design fast local level-set methods to simultaneously reconstruct both unknown domain and varying density of the anomalous measure from modulus of gravity force rather than from gravity force itself. The equivalent-source principle of gravitational potential forces us to consider only measures of the form begin{document}$ mu = f,chi_{D} $end{document} , where begin{document}$ f $end{document} is a density function and begin{document}$ D $end{document} is a domain inside a closed set in begin{document}$ bf{R}^n $end{document} . Accordingly, various constraints are imposed upon both the density function and the domain so that well-posedness theories can be developed for the corresponding inverse problems, such as the domain inverse problem, the density inverse problem, and the domain-density inverse problem. Starting from uniqueness theorems for the domain-density inverse problem, we derive a new gradient from the misfit functional to enforce the directional-independence constraint of the density function and we further introduce a new labeling function into the level-set method to enforce the geometrical constraint of the corresponding domain; consequently, we are able to recover simultaneously both unknown domain and varying density from given modulus of gravity force. Our fast level-set method is built upon localizing the level-set evolution around a narrow band near the zero level-set and upon accelerating numerical modeling by novel low-rank matrix multiplication. Numerical results demonstrate that uniqueness theorems are crucial for solving the inverse problem of gravimetry and will be impactful on gravity prospecting. To the best of our knowledge, our inversion algorithm is the first of such for the domain-density inverse problem since it is based upon the conditional well-posedness theory of the inverse problem.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86831100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radar interferometry is an advanced remote sensing technology that utilizes complex phases of two or more radar images of the same target taken at slightly different imaging conditions and/or different times. Its goal is to derive additional information about the target, such as elevation. While this kind of task requires centimeter-level accuracy, the interaction of radar signals with the target, as well as the lack of precision in antenna position and other disturbances, generate ambiguities in the image phase that are orders of magnitude larger than the effect of interest.Yet the common exposition of radar interferometry in the literature often skips such topics. This may lead to unrealistic requirements for the accuracy of determining the parameters of imaging geometry, unachievable precision of image co-registration, etc. To address these deficiencies, in the current work we analyze the problem of interferometric height reconstruction and provide a careful and detailed account of all the assumptions and requirements to the imaging geometry and data processing needed for a successful extraction of height information from the radar data. We employ two most popular scattering models for radar targets: an isolated point scatterer and delta-correlated extended scatterer, and highlight the similarities and differences between them.
{"title":"A mathematical perspective on radar interferometry","authors":"M. Gilman, S. Tsynkov","doi":"10.3934/ipi.2021043","DOIUrl":"https://doi.org/10.3934/ipi.2021043","url":null,"abstract":"Radar interferometry is an advanced remote sensing technology that utilizes complex phases of two or more radar images of the same target taken at slightly different imaging conditions and/or different times. Its goal is to derive additional information about the target, such as elevation. While this kind of task requires centimeter-level accuracy, the interaction of radar signals with the target, as well as the lack of precision in antenna position and other disturbances, generate ambiguities in the image phase that are orders of magnitude larger than the effect of interest.Yet the common exposition of radar interferometry in the literature often skips such topics. This may lead to unrealistic requirements for the accuracy of determining the parameters of imaging geometry, unachievable precision of image co-registration, etc. To address these deficiencies, in the current work we analyze the problem of interferometric height reconstruction and provide a careful and detailed account of all the assumptions and requirements to the imaging geometry and data processing needed for a successful extraction of height information from the radar data. We employ two most popular scattering models for radar targets: an isolated point scatterer and delta-correlated extended scatterer, and highlight the similarities and differences between them.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88401947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao
Pathological examination has been done manually by visual inspection of hematoxylin and eosin (H&E)-stained images. However, this process is labor intensive, prone to large variations, and lacking reproducibility in the diagnosis of a tumor. We aim to develop an automatic workflow to extract different cell nuclei found in cancerous tumors portrayed in digital renderings of the H&E-stained images. For a given image, we propose a semantic pixel-wise segmentation technique using dilated convolutions. The architecture of our dilated convolutional network (DCN) is based on SegNet, a deep convolutional encoder-decoder architecture. For the encoder, all the max pooling layers in the SegNet are removed and the convolutional layers are replaced by dilated convolution layers with increased dilation factors to preserve image resolution. For the decoder, all max unpooling layers are removed and the convolutional layers are replaced by dilated convolution layers with decreased dilation factors to remove gridding artifacts. We show that dilated convolutions are superior in extracting information from textured images. We test our DCN network on both synthetic data sets and a public available data set of H&E-stained images and achieve better results than the state of the art.
{"title":"Automatic extraction of cell nuclei using dilated convolutional network","authors":"Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao","doi":"10.3934/ipi.2020049","DOIUrl":"https://doi.org/10.3934/ipi.2020049","url":null,"abstract":"Pathological examination has been done manually by visual inspection of hematoxylin and eosin (H&E)-stained images. However, this process is labor intensive, prone to large variations, and lacking reproducibility in the diagnosis of a tumor. We aim to develop an automatic workflow to extract different cell nuclei found in cancerous tumors portrayed in digital renderings of the H&E-stained images. For a given image, we propose a semantic pixel-wise segmentation technique using dilated convolutions. The architecture of our dilated convolutional network (DCN) is based on SegNet, a deep convolutional encoder-decoder architecture. For the encoder, all the max pooling layers in the SegNet are removed and the convolutional layers are replaced by dilated convolution layers with increased dilation factors to preserve image resolution. For the decoder, all max unpooling layers are removed and the convolutional layers are replaced by dilated convolution layers with decreased dilation factors to remove gridding artifacts. We show that dilated convolutions are superior in extracting information from textured images. We test our DCN network on both synthetic data sets and a public available data set of H&E-stained images and achieve better results than the state of the art.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80442336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanyan Shi, Zhiwei Tian, Meng Wang, Xiaolong Kong, Lei Li, F. Fu
Electrical impedance tomography (EIT) is a sensing technique with which conductivity distribution can be reconstructed. It should be mentioned that the reconstruction is a highly ill-posed inverse problem. Currently, the regularization method has been an effective approach to deal with this problem. Especially, total variation regularization method is advantageous over Tikhonov method as the edge information can be well preserved. Nevertheless, the reconstructed image shows severe staircase effect. In this work, to enhance the quality of reconstruction, a novel hybrid regularization model which combines a total generalized variation method with a wavelet frame approach (TGV-WF) is proposed. An efficient mean doubly augmented Lagrangian algorithm has been developed to solve the TGV-WF model. To demonstrate the effectiveness of the proposed method, numerical simulation and experimental validation are conducted for imaging conductivity distribution. Furthermore, some comparisons are made with typical regularization methods. From the results, it can be found that the proposed method shows better performance in the reconstruction since the edge of the inclusion can be well preserved and the staircase effect is effectively relieved.
{"title":"A wavelet frame constrained total generalized variation model for imaging conductivity distribution","authors":"Yanyan Shi, Zhiwei Tian, Meng Wang, Xiaolong Kong, Lei Li, F. Fu","doi":"10.3934/ipi.2021074","DOIUrl":"https://doi.org/10.3934/ipi.2021074","url":null,"abstract":"Electrical impedance tomography (EIT) is a sensing technique with which conductivity distribution can be reconstructed. It should be mentioned that the reconstruction is a highly ill-posed inverse problem. Currently, the regularization method has been an effective approach to deal with this problem. Especially, total variation regularization method is advantageous over Tikhonov method as the edge information can be well preserved. Nevertheless, the reconstructed image shows severe staircase effect. In this work, to enhance the quality of reconstruction, a novel hybrid regularization model which combines a total generalized variation method with a wavelet frame approach (TGV-WF) is proposed. An efficient mean doubly augmented Lagrangian algorithm has been developed to solve the TGV-WF model. To demonstrate the effectiveness of the proposed method, numerical simulation and experimental validation are conducted for imaging conductivity distribution. Furthermore, some comparisons are made with typical regularization methods. From the results, it can be found that the proposed method shows better performance in the reconstruction since the edge of the inclusion can be well preserved and the staircase effect is effectively relieved.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87519380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edge detection is an important problem in image processing, especially for mixed noise. In this work, we propose a variational edge detection model with mixed noise by using Maximum A-Posteriori (MAP) approach. The novel model is formed with the regularization terms and the data fidelity terms that feature different mixed noise. Furthermore, we adopt the alternating direction method of multipliers (ADMM) to solve the proposed model. Numerical experiments on a variety of gray and color images demonstrate the efficiency of the proposed model.
{"title":"Edge detection with mixed noise based on maximum a posteriori approach","authors":"Yuying Shi, Zi-peng Liu, Xiaoying Wang, Jinping Zhang","doi":"10.3934/IPI.2021035","DOIUrl":"https://doi.org/10.3934/IPI.2021035","url":null,"abstract":"Edge detection is an important problem in image processing, especially for mixed noise. In this work, we propose a variational edge detection model with mixed noise by using Maximum A-Posteriori (MAP) approach. The novel model is formed with the regularization terms and the data fidelity terms that feature different mixed noise. Furthermore, we adopt the alternating direction method of multipliers (ADMM) to solve the proposed model. Numerical experiments on a variety of gray and color images demonstrate the efficiency of the proposed model.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79012522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we mainly show a novel fast fractional order anisotropic diffusion algorithm for noise removal based on the recent numerical scheme called the Fast Explicit Diffusion. To balance the efficiency and accuracy of the algorithm, the truncated matrix method is used to deal with the iterative matrix in the model and its error is also estimated. In particular, we obtain the stability condition of the iteration by the spectrum analysis method. Through implementing the fast explicit format iteration algorithm with periodic change of time step size, the efficiency of the algorithm is greatly improved. At last, we show some numerical results on denoising tasks. Many experimental results confirm that the algorithm can more quickly achieve satisfactory denoising results.
{"title":"A fast explicit diffusion algorithm of fractional order anisotropic diffusion for image denoising","authors":"Zhiguang Zhang, Qiang Liu, Tianling Gao","doi":"10.3934/IPI.2021018","DOIUrl":"https://doi.org/10.3934/IPI.2021018","url":null,"abstract":"In this paper, we mainly show a novel fast fractional order anisotropic diffusion algorithm for noise removal based on the recent numerical scheme called the Fast Explicit Diffusion. To balance the efficiency and accuracy of the algorithm, the truncated matrix method is used to deal with the iterative matrix in the model and its error is also estimated. In particular, we obtain the stability condition of the iteration by the spectrum analysis method. Through implementing the fast explicit format iteration algorithm with periodic change of time step size, the efficiency of the algorithm is greatly improved. At last, we show some numerical results on denoising tasks. Many experimental results confirm that the algorithm can more quickly achieve satisfactory denoising results.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85063136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seonho Park, M. Rysz, Kaitlin L. Fair, P. Pardalos
Navigating unmanned aerial vehicles in precarious environments is of great importance. It is necessary to rely on alternative information processing techniques to attain spatial information that is required for navigation in such settings. This paper introduces a novel deep learning-based approach for navigating that exclusively relies on synthetic aperture radar (SAR) images. The proposed method utilizes deep neural networks (DNNs) for image matching, retrieval, and registration. To this end, we introduce Deep Cosine Similarity Neural Networks (DCSNNs) for mapping SAR images to a global descriptive feature vector. We also introduce a fine-tuning algorithm for DCSNNs, and DCSNNs are used to generate a database of feature vectors for SAR images that span a geographic area of interest, which, in turn, are compared against a feature vector of an inquiry image. Images similar to the inquiry are retrieved from the database by using a scalable distance measure between the feature vector outputs of DCSNN. Methods for reranking the retrieved SAR images that are used to update position coordinates of an inquiry SAR image by estimating from the best retrieved SAR image are also introduced. Numerical experiments comparing with baselines on the Polarimetric SAR (PolSAR) images are presented.
{"title":"Synthetic-Aperture Radar image based positioning in GPS-denied environments using Deep Cosine Similarity Neural Networks","authors":"Seonho Park, M. Rysz, Kaitlin L. Fair, P. Pardalos","doi":"10.3934/IPI.2021013","DOIUrl":"https://doi.org/10.3934/IPI.2021013","url":null,"abstract":"Navigating unmanned aerial vehicles in precarious environments is of great importance. It is necessary to rely on alternative information processing techniques to attain spatial information that is required for navigation in such settings. This paper introduces a novel deep learning-based approach for navigating that exclusively relies on synthetic aperture radar (SAR) images. The proposed method utilizes deep neural networks (DNNs) for image matching, retrieval, and registration. To this end, we introduce Deep Cosine Similarity Neural Networks (DCSNNs) for mapping SAR images to a global descriptive feature vector. We also introduce a fine-tuning algorithm for DCSNNs, and DCSNNs are used to generate a database of feature vectors for SAR images that span a geographic area of interest, which, in turn, are compared against a feature vector of an inquiry image. Images similar to the inquiry are retrieved from the database by using a scalable distance measure between the feature vector outputs of DCSNN. Methods for reranking the retrieved SAR images that are used to update position coordinates of an inquiry SAR image by estimating from the best retrieved SAR image are also introduced. Numerical experiments comparing with baselines on the Polarimetric SAR (PolSAR) images are presented.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82953014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}