首页 > 最新文献

Mechanical Sciences最新文献

英文 中文
Visual simultaneous localization and mapping (vSLAM) algorithm based on improved Vision Transformer semantic segmentation in dynamic scenes 基于改进的动态场景视觉转换器语义分割的视觉同步定位和映射(vSLAM)算法
Pub Date : 2024-01-03 DOI: 10.5194/ms-15-1-2024
Mengyuan Chen, Hangrong Guo, Runbang Qian, Guangqiang Gong, Hao Cheng
Abstract. Identifying dynamic objects in dynamic scenes remains a challenge for traditional simultaneous localization and mapping (SLAM) algorithms. Additionally, these algorithms are not able to adequately inpaint the culling regions that result from excluding dynamic objects. In light of these challenges, this study proposes a novel visual SLAM (vSLAM) algorithm based on improved Vision Transformer semantic segmentation in dynamic scenes (VTD-SLAM), which leverages an improved Vision Transformer semantic segmentation technique to address these limitations. Specifically, VTD-SLAM utilizes a residual dual-pyramid backbone network to extract dynamic object region features and a multiclass feature transformer segmentation module to enhance the pixel weight of potential dynamic objects and to improve global semantic information for precise identification of potential dynamic objects. The method of multi-view geometry is applied to judge and remove the dynamic objects. Meanwhile, according to static information in the adjacent frames, the optimal nearest-neighbor pixel-matching method is applied to restore the static background, where the feature points are extracted for pose estimation. With validation in the public dataset TUM (The Entrepreneurial University Dataset) and real scenarios, the experimental results show that the root-mean-square error of the algorithm is reduced by 17.1 % compared with dynamic SLAM (DynaSLAM), which shows better map composition capability.
摘要在动态场景中识别动态物体仍然是传统的同步定位和映射(SLAM)算法面临的一项挑战。此外,这些算法也无法充分涂抹因排除动态物体而产生的剔除区域。鉴于这些挑战,本研究提出了一种基于改进的动态场景视觉变换器语义分割(VTD-SLAM)的新型视觉 SLAM(vSLAM)算法,该算法利用改进的视觉变换器语义分割技术来解决这些局限性。具体来说,VTD-SLAM 利用残差双金字塔骨干网络提取动态物体区域特征,并利用多类特征变换器分割模块增强潜在动态物体的像素权重,改善全局语义信息,从而精确识别潜在动态物体。应用多视角几何方法对动态物体进行判断和去除。同时,根据相邻帧的静态信息,采用最优近邻像素匹配法还原静态背景,提取特征点进行姿态估计。通过公共数据集 TUM(创业大学数据集)和真实场景的验证,实验结果表明,与动态 SLAM(DynaSLAM)相比,该算法的均方根误差降低了 17.1%,显示了更好的地图合成能力。
{"title":"Visual simultaneous localization and mapping (vSLAM) algorithm based on improved Vision Transformer semantic segmentation in dynamic scenes","authors":"Mengyuan Chen, Hangrong Guo, Runbang Qian, Guangqiang Gong, Hao Cheng","doi":"10.5194/ms-15-1-2024","DOIUrl":"https://doi.org/10.5194/ms-15-1-2024","url":null,"abstract":"Abstract. Identifying dynamic objects in dynamic scenes remains a challenge for traditional simultaneous localization and mapping (SLAM) algorithms. Additionally, these algorithms are not able to adequately inpaint the culling regions that result from excluding dynamic objects. In light of these challenges, this study proposes a novel visual SLAM (vSLAM) algorithm based on improved Vision Transformer semantic segmentation in dynamic scenes (VTD-SLAM), which leverages an improved Vision Transformer semantic segmentation technique to address these limitations. Specifically, VTD-SLAM utilizes a residual dual-pyramid backbone network to extract dynamic object region features and a multiclass feature transformer segmentation module to enhance the pixel weight of potential dynamic objects and to improve global semantic information for precise identification of potential dynamic objects. The method of multi-view geometry is applied to judge and remove the dynamic objects. Meanwhile, according to static information in the adjacent frames, the optimal nearest-neighbor pixel-matching method is applied to restore the static background, where the feature points are extracted for pose estimation. With validation in the public dataset TUM (The Entrepreneurial University Dataset) and real scenarios, the experimental results show that the root-mean-square error of the algorithm is reduced by 17.1 % compared with dynamic SLAM (DynaSLAM), which shows better map composition capability.\u0000","PeriodicalId":502917,"journal":{"name":"Mechanical Sciences","volume":"59 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139451420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mechanical Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1