首页 > 最新文献

International Journal of Numerical Analysis and Modeling最新文献

英文 中文
A FINITE ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS WITH LOCALLY MODIFIED TRIANGULATIONS. 具有局部修正三角剖分的弹性界面问题的有限元方法。
IF 1.1 4区 数学 Q1 MATHEMATICS Pub Date : 2011-01-01
Hui Xie, Zhilin Li, Zhonghua Qiao

A finite element method for elasticity systems with discontinuities in the coefficients and the flux across an arbitrary interface is proposed in this paper. The method is based on a Cartesian mesh with local modifications to the mesh. The total degrees of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Numerical examples that involve discontinuous material coefficients and non-homogeneous jump in the flux across the interface demonstrate the efficiency of the proposed method.

本文提出了一种具有不连续系数和通过任意界面的通量的弹性系统的有限元方法。该方法基于笛卡尔网格,对网格进行局部修改。有限元法的总自由度与笛卡尔网格法的总自由度保持一致。局部修正后的网格由原来的笛卡尔网格得到拟均匀体拟合网格。标准有限元理论和实现是适用的。针对材料系数不连续和界面通量非均匀跳变的数值算例,验证了该方法的有效性。
{"title":"A FINITE ELEMENT METHOD FOR ELASTICITY INTERFACE PROBLEMS WITH LOCALLY MODIFIED TRIANGULATIONS.","authors":"Hui Xie,&nbsp;Zhilin Li,&nbsp;Zhonghua Qiao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A finite element method for elasticity systems with discontinuities in the coefficients and the flux across an arbitrary interface is proposed in this paper. The method is based on a Cartesian mesh with local modifications to the mesh. The total degrees of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Numerical examples that involve discontinuous material coefficients and non-homogeneous jump in the flux across the interface demonstrate the efficiency of the proposed method.</p>","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"8 2","pages":"189-200"},"PeriodicalIF":1.1,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777444/pdf/nihms495048.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31751403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE MELTING MECHANISM OF DNA TETHERED TO A SURFACE. DNA附着在表面的融化机制。
IF 1.1 4区 数学 Q1 MATHEMATICS Pub Date : 2009-03-08
Khawla Qamhieh, Ka-Yiu Wong, Gillian C Lynch, B Montgomery Pettitt

The details of melting of DNA immobilized on a chip or nanoparticle determines the sensitivity and operating characteristics of many analytical and synthetic biotechnological devices. Yet, little is known about the differences in how the DNA melting occurs between a homogeneous solution and that on a chip. We used molecular dynamics simulations to explore possible pathways for DNA melting on a chip. Simulation conditions were chosen to ensure that melting occurred in a submicrosecond timescale. The temperature was set to 400 K and the NaCl concentration was set to 0.1 M. We found less symmetry than in the solution case where for oligomeric double-stranded nucleic acids both ends melted with roughly equal probability. On a prepared silica surface we found melting is dominated by fraying from the end away from the surface. Strand separation was hindered by nonspecific surface adsorption at this temperature. At elevated temperatures the melted DNA was attracted to even uncharged organically coated surfaces demonstrating surface fouling. While hybridization is not the simple reverse of melting, this simulation has implications for the kinetics of hybridization.

固定在芯片或纳米颗粒上的DNA融化的细节决定了许多分析和合成生物技术设备的灵敏度和操作特性。然而,人们对均匀溶液和芯片上的DNA融化方式的差异知之甚少。我们使用分子动力学模拟来探索DNA在芯片上融化的可能途径。选择模拟条件以确保熔化在亚微秒时间尺度内发生。温度设置为400 K, NaCl浓度设置为0.1 m,我们发现在溶液情况下,对于低聚双链核酸,两端熔化的概率大致相等,对称性较小。在制备好的二氧化硅表面上,我们发现熔化主要是由远离表面的末端磨损引起的。在此温度下,非特异性表面吸附阻碍了链的分离。在高温下,融化的DNA被吸引到甚至未带电的有机涂层表面,显示出表面污染。虽然杂化不是熔化的简单反向,但该模拟对杂化动力学具有启示意义。
{"title":"THE MELTING MECHANISM OF DNA TETHERED TO A SURFACE.","authors":"Khawla Qamhieh,&nbsp;Ka-Yiu Wong,&nbsp;Gillian C Lynch,&nbsp;B Montgomery Pettitt","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The details of melting of DNA immobilized on a chip or nanoparticle determines the sensitivity and operating characteristics of many analytical and synthetic biotechnological devices. Yet, little is known about the differences in how the DNA melting occurs between a homogeneous solution and that on a chip. We used molecular dynamics simulations to explore possible pathways for DNA melting on a chip. Simulation conditions were chosen to ensure that melting occurred in a submicrosecond timescale. The temperature was set to 400 K and the NaCl concentration was set to 0.1 M. We found less symmetry than in the solution case where for oligomeric double-stranded nucleic acids both ends melted with roughly equal probability. On a prepared silica surface we found melting is dominated by fraying from the end away from the surface. Strand separation was hindered by nonspecific surface adsorption at this temperature. At elevated temperatures the melted DNA was attracted to even uncharged organically coated surfaces demonstrating surface fouling. While hybridization is not the simple reverse of melting, this simulation has implications for the kinetics of hybridization.</p>","PeriodicalId":50301,"journal":{"name":"International Journal of Numerical Analysis and Modeling","volume":"6 3","pages":"474-488"},"PeriodicalIF":1.1,"publicationDate":"2009-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755589/pdf/nihms106763.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40055846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Numerical Analysis and Modeling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1