Belkacem Djoual, R. Kettab, A. Ghrieb, T. Bouziani, R. Zaitri
The chosen plan for our case study is a network mixture design consisting of 21 mixtures. The application of this method has proven to be immensely useful in studying the influence of composition parameters (composite design) and the utilization of various types of mineral additives (mixture design). The application of the Design of Experiments (DOE) method, based on a statistical approach, allowed for a better understanding of the effect of formulation parameters, including the proportion of alluvial sand (75%), dune sand (25%), the total amount of sand kept at constant percentages, the dosages of brick powder, limestone filler and ceramic powder (all varying from 0 %, 20 %, 40 %, 60 %, 80 %, and 100 %), while keeping the dosage of superplasticizer and the water/binder ratio constant. This approach helped to understand the interactions between these parameters and their impact on the process. Mathematical models relating the variations of these parameters to the workability and compressive strength of such concrete mixtures have been established. The results obtained show that the workability of SCSC (expressed by slump flow and V-funnel flow) improves with the increase in the dosage of limestone filler (FC), brick powder (PB), and ceramic powder (PC), with element having a different impact, be it alone or in a combination. Moreover, they all improved the behavior of SCSC in both the fresh and hardened states. The experiment shows that increasing the proportions of FC and PC in the mixture, whether linear, binary, or ternary, leads to a significant improvement in compressive strength. Furthermore, better strength is observed in the ternary mixture at 28 days, with a strength of 43 MPa, with the following proportions (FC 70%, PB 20%, PC 10%). Finally, the result at 180 days of 48 MPa confirms the following proportions (PC 60 %, FC 30 %, PB 10 %) The compliance of some SCSC compositions was tested according to the recommendations of the French Association of Civil Engineering.
{"title":"The Influence of Mineral Additives and Sands on the Performance of Self-Compacting Sand Concretes","authors":"Belkacem Djoual, R. Kettab, A. Ghrieb, T. Bouziani, R. Zaitri","doi":"10.2478/adms-2024-0007","DOIUrl":"https://doi.org/10.2478/adms-2024-0007","url":null,"abstract":"\u0000 The chosen plan for our case study is a network mixture design consisting of 21 mixtures. The application of this method has proven to be immensely useful in studying the influence of composition parameters (composite design) and the utilization of various types of mineral additives (mixture design). The application of the Design of Experiments (DOE) method, based on a statistical approach, allowed for a better understanding of the effect of formulation parameters, including the proportion of alluvial sand (75%), dune sand (25%), the total amount of sand kept at constant percentages, the dosages of brick powder, limestone filler and ceramic powder (all varying from 0 %, 20 %, 40 %, 60 %, 80 %, and 100 %), while keeping the dosage of superplasticizer and the water/binder ratio constant. This approach helped to understand the interactions between these parameters and their impact on the process. Mathematical models relating the variations of these parameters to the workability and compressive strength of such concrete mixtures have been established. The results obtained show that the workability of SCSC (expressed by slump flow and V-funnel flow) improves with the increase in the dosage of limestone filler (FC), brick powder (PB), and ceramic powder (PC), with element having a different impact, be it alone or in a combination. Moreover, they all improved the behavior of SCSC in both the fresh and hardened states. The experiment shows that increasing the proportions of FC and PC in the mixture, whether linear, binary, or ternary, leads to a significant improvement in compressive strength. Furthermore, better strength is observed in the ternary mixture at 28 days, with a strength of 43 MPa, with the following proportions (FC 70%, PB 20%, PC 10%). Finally, the result at 180 days of 48 MPa confirms the following proportions (PC 60 %, FC 30 %, PB 10 %) The compliance of some SCSC compositions was tested according to the recommendations of the French Association of Civil Engineering.","PeriodicalId":504147,"journal":{"name":"Advances in Materials Science","volume":"393 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140281627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The main objective of this paper research is a comparative study on the effect of the glass powder (GP) substitute from collected and recycled glass waste, as a fine partial cement replacement on the mechanical performance and durability of high performance concrete (HPC) and ordinary concrete (OC). For this two cement dosing were used of 400 kg/m3 to formulate OC and 450 kg/m3 to formulate HPC, and GP as considered binder like cement and not as fine addition, hence binder represent the sum of cement with GP (L=C+GP) with which will be made our two concretes formulation. Two ratios were used for the Water/Binder (W/B), the first W/B=0.35 for the HPC and the second W/B=0.5 for the OC, this ration is very important to fix the concentration of superplasticizer. A percentage of 10% and 20% substitution of cement CPA without additions noted CEM I 52.5 by the glass powder with fineness of 3600 cm 2/g are used. The evaluation of the compressive strength was followed from 7 to 365 days in order to study the behavior of the GP at different ages affected by the cement dosing and the ratio W/B compared to the reference concrete without GP for the two concretes HPC and OC. At 28 days the strengths of concretes with GP is affected by the replacement of a quantity of cement since the two reference concretes were superior but beyond this age an inverse behavior is noticed such that results obtained at age of 365 days seem to be advantageous in terms of savings in the quantity of cement used by interpreting the compressive strength, and the decrease in quantity of water in the mixtures offers a remarkable difference between the two concretes studied by using 20 % of GP as replacement of cement.
本文研究的主要目的是比较研究从收集和回收的玻璃废料中提取的玻璃粉(GP)替代品作为部分细水泥替代品对高性能混凝土(HPC)和普通混凝土(OC)机械性能和耐久性的影响。因此,粘合剂代表水泥与 GP 的总和(L=C+GP)。水/粘合剂(W/B)采用了两种比例,第一种 W/B=0.35 用于 HPC,第二种 W/B=0.5 用于 OC,这一比例对于确定超塑化剂的浓度非常重要。使用细度为 3600 cm 2/g 的玻璃粉分别替代 10%和 20%的水泥 CPA(未添加 CEM I 52.5)。抗压强度的评估从 7 天持续到 365 天,目的是研究不同龄期的 GP 受水泥剂量和 W/B 比率影响的行为,并与 HPC 和 OC 两种不含 GP 的参考混凝土进行比较。在 28 天时,添加了 GP 的混凝土的强度会受到一定量水泥替代物的影响,因为两种参考混凝土的强度都较高,但在超过这个龄期后,就会出现反向行为,因此在 365 天龄期获得的结果在通过解释抗压强度来节省水泥用量方面似乎更有优势,而且通过使用 20% 的 GP 作为水泥替代物来减少混合物中的水量,在所研究的两种混凝土之间产生了显著的差异。
{"title":"Effect of Cement Dosing Without Additions (CPA) on High-Performance and Ordinary Concrete Based Glass Powder as Fine Partial Cement Replacement - A Comparative Study","authors":"B. Aissat-Arab, R. Mehaddene","doi":"10.2478/adms-2024-0002","DOIUrl":"https://doi.org/10.2478/adms-2024-0002","url":null,"abstract":"\u0000 The main objective of this paper research is a comparative study on the effect of the glass powder (GP) substitute from collected and recycled glass waste, as a fine partial cement replacement on the mechanical performance and durability of high performance concrete (HPC) and ordinary concrete (OC). For this two cement dosing were used of 400 kg/m3 to formulate OC and 450 kg/m3 to formulate HPC, and GP as considered binder like cement and not as fine addition, hence binder represent the sum of cement with GP (L=C+GP) with which will be made our two concretes formulation. Two ratios were used for the Water/Binder (W/B), the first W/B=0.35 for the HPC and the second W/B=0.5 for the OC, this ration is very important to fix the concentration of superplasticizer. A percentage of 10% and 20% substitution of cement CPA without additions noted CEM I 52.5 by the glass powder with fineness of 3600 cm 2/g are used. The evaluation of the compressive strength was followed from 7 to 365 days in order to study the behavior of the GP at different ages affected by the cement dosing and the ratio W/B compared to the reference concrete without GP for the two concretes HPC and OC. At 28 days the strengths of concretes with GP is affected by the replacement of a quantity of cement since the two reference concretes were superior but beyond this age an inverse behavior is noticed such that results obtained at age of 365 days seem to be advantageous in terms of savings in the quantity of cement used by interpreting the compressive strength, and the decrease in quantity of water in the mixtures offers a remarkable difference between the two concretes studied by using 20 % of GP as replacement of cement.","PeriodicalId":504147,"journal":{"name":"Advances in Materials Science","volume":"61 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140272162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Varbai, Richárd Wéber, Balázs Farkas, Péter Danyi, A. Krójer, R. Locskai, György Bohács, C.-S. Hős
The crude distillation unit is the most critical elements in the refining process. Moreover, most of the equipment in the distillation unit are made of general carbon steels. Data analysis models, machine learning techniques can predict corrosion degradation rates. We used Pearson’s correlation coefficient and multiple linear regression, to predict the impact of process parameters. Altogether, we have analysed 84 channels of technological parameters, and 22 different types of crude oils. Among the corrosion agents, the chloride content strongly affected the weight loss of coupons, where the highest coefficient was 0.68. The most influential parameter is found to be the pH value. Thus, an estimation method of the pH value is set up to predict the corrosion degradation rate. The regression correlation for estimating the pH value is 0.53 if the corrosion agents are not used, which can be improved to 0.76 if the corrosion agents are also used in the regression analysis.
{"title":"Application of Regression Models on the Prediction of Corrosion Degradation of a Crude Oil Distillation Unit","authors":"B. Varbai, Richárd Wéber, Balázs Farkas, Péter Danyi, A. Krójer, R. Locskai, György Bohács, C.-S. Hős","doi":"10.2478/adms-2024-0005","DOIUrl":"https://doi.org/10.2478/adms-2024-0005","url":null,"abstract":"\u0000 The crude distillation unit is the most critical elements in the refining process. Moreover, most of the equipment in the distillation unit are made of general carbon steels. Data analysis models, machine learning techniques can predict corrosion degradation rates. We used Pearson’s correlation coefficient and multiple linear regression, to predict the impact of process parameters. Altogether, we have analysed 84 channels of technological parameters, and 22 different types of crude oils. Among the corrosion agents, the chloride content strongly affected the weight loss of coupons, where the highest coefficient was 0.68. The most influential parameter is found to be the pH value. Thus, an estimation method of the pH value is set up to predict the corrosion degradation rate. The regression correlation for estimating the pH value is 0.53 if the corrosion agents are not used, which can be improved to 0.76 if the corrosion agents are also used in the regression analysis.","PeriodicalId":504147,"journal":{"name":"Advances in Materials Science","volume":"15 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140277487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aluminum-doped zinc oxide (AZO) films have emerged as promising transparent electrodes for various optoelectronic applications due to their superior transparency, electrical conductivity, and cost-effectiveness compared to indium tin oxide (ITO). Despite their widespread use, investigations into the electromechanical properties of AZO films, especially under various mechanical deformations, remain limited. This study employs RF magnetron sputtering to deposit AZO films on polyethylene naphthalate (PEN) substrates and explores their mechanical behavior through uniaxial tensile fragmentation and bending tests, coupled with in-situ optical microscopy. Changes in electrical resistance of AZO films were monitored in situ during deformation. Fatigue behavior was examined to further understand mechanical failure, and SEM was used for surface characterization. A critical strain of about 3.1 percent was detected during uniaxial tensile testing, marking the onset of cracks in AZO-coated PEN. In contrast to thicker films, thinner films demonstrated improved stretchability beyond the initiation of crack onset strain. Tension and compression bending tests revealed that the material has excellent bendability, as shown by its critical radii of 5.4 mm and 3.9 mm, respectively. The bending reliability of AZO films under compression was found to be superior than that under tension. Bending fatigue experiments demonstrated that AZO films could withstand cyclic stress without experiencing no ticeable cracks after 100 cycles and with very minor resistance change. This study contributes to the creation of more reliable and optimized flexible optoelectronic devices by giving substantial quantitative data on the performance of AZO films when exposed to mechanical stress.
{"title":"Mechanical Flexibility and Electrical Reliability of ZnO-Al Thin Films on Polymer Substrates Under Different External Deformation","authors":"D. Mohammed","doi":"10.2478/adms-2024-0003","DOIUrl":"https://doi.org/10.2478/adms-2024-0003","url":null,"abstract":"\u0000 Aluminum-doped zinc oxide (AZO) films have emerged as promising transparent electrodes for various optoelectronic applications due to their superior transparency, electrical conductivity, and cost-effectiveness compared to indium tin oxide (ITO). Despite their widespread use, investigations into the electromechanical properties of AZO films, especially under various mechanical deformations, remain limited. This study employs RF magnetron sputtering to deposit AZO films on polyethylene naphthalate (PEN) substrates and explores their mechanical behavior through uniaxial tensile fragmentation and bending tests, coupled with in-situ optical microscopy. Changes in electrical resistance of AZO films were monitored in situ during deformation. Fatigue behavior was examined to further understand mechanical failure, and SEM was used for surface characterization. A critical strain of about 3.1 percent was detected during uniaxial tensile testing, marking the onset of cracks in AZO-coated PEN. In contrast to thicker films, thinner films demonstrated improved stretchability beyond the initiation of crack onset strain. Tension and compression bending tests revealed that the material has excellent bendability, as shown by its critical radii of 5.4 mm and 3.9 mm, respectively. The bending reliability of AZO films under compression was found to be superior than that under tension.\u0000 Bending fatigue experiments demonstrated that AZO films could withstand cyclic stress without experiencing no ticeable cracks after 100 cycles and with very minor resistance change. This study contributes to the creation of more reliable and optimized flexible optoelectronic devices by giving substantial quantitative data on the performance of AZO films when exposed to mechanical stress.","PeriodicalId":504147,"journal":{"name":"Advances in Materials Science","volume":"63 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140278581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Virt, P. Potera, G. Wisz, Andrzej Dziedzic, B. Cieniek, I. Lopatynskyi, M. Frugynskyi
Aluminium nitride thin films were fabricated using pulsed laser deposition and DC magnetron sputtering. Different technological parameters and the effects of different substrates on the optical and structural parameters of AlN samples were studied. An X-ray diffraction study was performed for the layer deposited on the Si3N4 substrate. A high-energy electron diffraction study was also carried out for the layer deposited on a KCl substrate. Transmission spectra of layers on quartz, sapphire, and glass substrates were obtained. An evaluation of the optical band gap of the obtained layers was carried out (Eg form 3.81 to 5.81 eV) and the refractive index was calculated (2.58). The relative density of the film (N1TN-AlN sample) is 1.26 and was calculated using the Lorentz-Lorentz relationship. Layers of aluminium nitride show an amorphous character with a polycrystalline region. It was shown that the properties of AlN films strongly depend on the method, growth conditions, and substrate used.
{"title":"Structural and Optical Properties of Aluminium Nitride Thin Films Fabricated Using Pulsed Laser Deposition and DC Magnetron Sputtering on Various Substrates","authors":"I. Virt, P. Potera, G. Wisz, Andrzej Dziedzic, B. Cieniek, I. Lopatynskyi, M. Frugynskyi","doi":"10.2478/adms-2024-0001","DOIUrl":"https://doi.org/10.2478/adms-2024-0001","url":null,"abstract":"\u0000 Aluminium nitride thin films were fabricated using pulsed laser deposition and DC magnetron sputtering. Different technological parameters and the effects of different substrates on the optical and structural parameters of AlN samples were studied. An X-ray diffraction study was performed for the layer deposited on the Si3N4 substrate. A high-energy electron diffraction study was also carried out for the layer deposited on a KCl substrate. Transmission spectra of layers on quartz, sapphire, and glass substrates were obtained. An evaluation of the optical band gap of the obtained layers was carried out (Eg\u0000 form 3.81 to 5.81 eV) and the refractive index was calculated (2.58). The relative density of the film (N1TN-AlN sample) is 1.26 and was calculated using the Lorentz-Lorentz relationship. Layers of aluminium nitride show an amorphous character with a polycrystalline region. It was shown that the properties of AlN films strongly depend on the method, growth conditions, and substrate used.","PeriodicalId":504147,"journal":{"name":"Advances in Materials Science","volume":"39 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140276805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The technological parameters of 3D printing have an influence on the mechanical properties of the manufactured components. The purpose of the article was to study the comparative influence of the technological parameter of the number of shells variable in two stages (2 and 10) on selected mechanical properties. The maximum tensile stress for the number of shells 10 was 39.80 MPa, which is higher compared to the number of shells 2: 30.98 MPa. In the case of the maximum bending stress for the number of shells 10, an average value of 61.02 MPa was obtained, which is higher compared to the number of shells of 2: 37.46 MPa. Furthermore strong fit of the Kelvin-Voight model was obtained, as confirmed by the values of the Cℎi 2: 0.0001 and R 2: 0.997 coefficients.
{"title":"Effect of the Number of Shells on Selected Mechanical Properties of Parts Manufactured by FDM/FFF Technology","authors":"Wiktor Szot, Mateusz Rudnik","doi":"10.2478/adms-2024-0006","DOIUrl":"https://doi.org/10.2478/adms-2024-0006","url":null,"abstract":"\u0000 The technological parameters of 3D printing have an influence on the mechanical properties of the manufactured components. The purpose of the article was to study the comparative influence of the technological parameter of the number of shells variable in two stages (2 and 10) on selected mechanical properties. The maximum tensile stress for the number of shells 10 was 39.80 MPa, which is higher compared to the number of shells 2: 30.98 MPa. In the case of the maximum bending stress for the number of shells 10, an average value of 61.02 MPa was obtained, which is higher compared to the number of shells of 2: 37.46 MPa. Furthermore strong fit of the Kelvin-Voight model was obtained, as confirmed by the values of the Cℎi\u0000 2: 0.0001 and R\u0000 2: 0.997 coefficients.","PeriodicalId":504147,"journal":{"name":"Advances in Materials Science","volume":"1 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140270385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon fibers have been technically applied in high performance materials and industrial scale applications. Importantly, carbon fiber reinforced composite materials have found applications in aerospace industries. These properties of carbon fiber reinforced composites depend upon the carbon fiber features such as length, orientation, surface properties, adhesion with matrices, etc. To improve the surface properties of carbon fibers and adhesion and interactions with polymers, fiber modification has been suggested as an efficient approach. Carbon nanoparticle or nanocarbon functionalized carbon fibers have been manufactured using various facile physical and chemical approaches such as electrospraying, electrophoretic deposition, chemical vapor deposition, etc. Consequently, the modified carbon fibers have nanocarbon nanoparticles such as graphene, carbon nanotube, nanodiamond, fullerene, and other nanocarbons deposited on the fiber surface. These nanocarbon nanoparticles have fine capability to improve interfacial linking of carbon fibers with the polymer matrices. The chemical vapor deposition has been adopted for uniform deposition of nanocarbon on carbon fibers and chemical methods involving physical or chemical modification have also been frequently used. The resulting advanced epoxy/carbon fiber/nanocarbon composites revealed improved tensile and physical profiles. This review basically aims manufacturing and technical aspects of polymer/fiber/nanofiller nanocomposites toward the development of high performance structures. The resulting morphology, strength, modulus, toughness, thermal stability, and other physical features of the nanocarbon functionalized carbon fibers have been enhanced. In addition, the fabricated polymer/fiber/nanofiller nanocomposites have fine interfacial adhesion, matrix-nanofiller-filler compatibility, and other characteristics. The application areas of these nanomaterials have been found wide ranging including the strengthened engineering structures, supercapacitors, shape memory materials, and several others.
{"title":"Nanocomposites of Nanocarbon Functionalized Carbon Fibers—Manufacturing to Methodological Applications","authors":"Ayesha Kausar, Ishaq Ahmad","doi":"10.2478/adms-2024-0004","DOIUrl":"https://doi.org/10.2478/adms-2024-0004","url":null,"abstract":"\u0000 Carbon fibers have been technically applied in high performance materials and industrial scale applications. Importantly, carbon fiber reinforced composite materials have found applications in aerospace industries. These properties of carbon fiber reinforced composites depend upon the carbon fiber features such as length, orientation, surface properties, adhesion with matrices, etc. To improve the surface properties of carbon fibers and adhesion and interactions with polymers, fiber modification has been suggested as an efficient approach. Carbon nanoparticle or nanocarbon functionalized carbon fibers have been manufactured using various facile physical and chemical approaches such as electrospraying, electrophoretic deposition, chemical vapor deposition, etc. Consequently, the modified carbon fibers have nanocarbon nanoparticles such as graphene, carbon nanotube, nanodiamond, fullerene, and other nanocarbons deposited on the fiber surface. These nanocarbon nanoparticles have fine capability to improve interfacial linking of carbon fibers with the polymer matrices. The chemical vapor deposition has been adopted for uniform deposition of nanocarbon on carbon fibers and chemical methods involving physical or chemical modification have also been frequently used. The resulting advanced epoxy/carbon fiber/nanocarbon composites revealed improved tensile and physical profiles. This review basically aims manufacturing and technical aspects of polymer/fiber/nanofiller nanocomposites toward the development of high performance structures. The resulting morphology, strength, modulus, toughness, thermal stability, and other physical features of the nanocarbon functionalized carbon fibers have been enhanced. In addition, the fabricated polymer/fiber/nanofiller nanocomposites have fine interfacial adhesion, matrix-nanofiller-filler compatibility, and other characteristics. The application areas of these nanomaterials have been found wide ranging including the strengthened engineering structures, supercapacitors, shape memory materials, and several others.","PeriodicalId":504147,"journal":{"name":"Advances in Materials Science","volume":"262 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140280464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}