首页 > 最新文献

Social Network Analysis and Mining最新文献

英文 中文
A turbulent flow optimized deep fused ensemble model (TFO-DFE) for sentiment analysis using social corpus data 利用社交语料库数据进行情感分析的湍流优化深度融合集合模型(TFO-DFE)
Pub Date : 2024-02-20 DOI: 10.1007/s13278-024-01203-2
E. Aarthi, S. Jagan, C. P. Devi, J. J. Gracewell, S. Choubey, A. Choubey, S. Gopalakrishnan
{"title":"A turbulent flow optimized deep fused ensemble model (TFO-DFE) for sentiment analysis using social corpus data","authors":"E. Aarthi, S. Jagan, C. P. Devi, J. J. Gracewell, S. Choubey, A. Choubey, S. Gopalakrishnan","doi":"10.1007/s13278-024-01203-2","DOIUrl":"https://doi.org/10.1007/s13278-024-01203-2","url":null,"abstract":"","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"6 11","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139958092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving association discovery through multiview analysis of social networks 通过社交网络多视角分析改进关联发现
Pub Date : 2024-02-20 DOI: 10.1007/s13278-023-01197-3
Muhieddine Shebaro, Lia Nogueira de Moura, Jelena Tesic
{"title":"Improving association discovery through multiview analysis of social networks","authors":"Muhieddine Shebaro, Lia Nogueira de Moura, Jelena Tesic","doi":"10.1007/s13278-023-01197-3","DOIUrl":"https://doi.org/10.1007/s13278-023-01197-3","url":null,"abstract":"","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"11 19","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139958274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twitter’s pulse on hydrogen energy in 280 characters: a data perspective 推特以 280 个字符把脉氢能源:数据视角
Pub Date : 2024-02-01 DOI: 10.1007/s13278-023-01194-6
Deepak Uniyal, Richi Nayak
{"title":"Twitter’s pulse on hydrogen energy in 280 characters: a data perspective","authors":"Deepak Uniyal, Richi Nayak","doi":"10.1007/s13278-023-01194-6","DOIUrl":"https://doi.org/10.1007/s13278-023-01194-6","url":null,"abstract":"","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"3 3","pages":"1-21"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139688101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis of semantic veracity enhance (SVE) classifier for fake news detection and demystifying the online user behaviour in social media using sentiment analysis 用于假新闻检测的语义真实性增强(SVE)分类器的性能分析,以及利用情感分析解密社交媒体中的在线用户行为
Pub Date : 2024-01-31 DOI: 10.1007/s13278-024-01199-9
Monikka Reshmi Sethurajan, K. Natarajan
{"title":"Performance analysis of semantic veracity enhance (SVE) classifier for fake news detection and demystifying the online user behaviour in social media using sentiment analysis","authors":"Monikka Reshmi Sethurajan, K. Natarajan","doi":"10.1007/s13278-024-01199-9","DOIUrl":"https://doi.org/10.1007/s13278-024-01199-9","url":null,"abstract":"","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"321 2","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140472573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assembling a multi-platform ensemble social bot detector with applications to US 2020 elections 组装多平台集合社交机器人探测器,应用于美国 2020 年大选
Pub Date : 2024-01-26 DOI: 10.48550/arXiv.2401.14607
L. Ng, K. Carley
Bots have been in the spotlight for many social media studies, for they have been observed to be participating in the manipulation of information and opinions on social media. These studies analyzed the activity and influence of bots in a variety of contexts: elections, protests, health communication and so forth. Prior to this analyzes is the identification of bot accounts to segregate the class of social media users. In this work, we propose an ensemble method for bot detection, designing a multi-platform bot detection architecture to handle several problems along the bot detection pipeline: incomplete data input, minimal feature engineering, optimized classifiers for each data field, and also eliminate the need for a threshold value for classification determination. With these design decisions, we generalize our bot detection framework across Twitter, Reddit and Instagram. We also perform feature importance analysis, observing that the entropy of names and number of interactions (retweets/shares) are important factors in bot determination. Finally, we apply our multi-platform bot detector to the US 2020 presidential elections to identify and analyze bot activity across multiple social media platforms, showcasing the difference in online discourse of bots from different platforms.
机器人一直是许多社交媒体研究的焦点,因为人们观察到它们参与操纵社交媒体上的信息和观点。这些研究分析了机器人在选举、抗议、健康传播等各种背景下的活动和影响。在进行这些分析之前,先要对机器人账户进行识别,以区分社交媒体用户的类别。在这项工作中,我们提出了一种用于僵尸检测的集合方法,设计了一个多平台僵尸检测架构,以处理僵尸检测管道中的几个问题:不完整的数据输入、最小化的特征工程、针对每个数据字段的优化分类器,还消除了对分类确定阈值的需求。通过这些设计决策,我们将僵尸检测框架推广到 Twitter、Reddit 和 Instagram。我们还进行了特征重要性分析,发现名称熵和互动数量(转发/分享)是判定僵尸的重要因素。最后,我们将多平台僵尸检测器应用于美国 2020 年总统大选,以识别和分析多个社交媒体平台上的僵尸活动,展示不同平台上的僵尸在网络言论中的差异。
{"title":"Assembling a multi-platform ensemble social bot detector with applications to US 2020 elections","authors":"L. Ng, K. Carley","doi":"10.48550/arXiv.2401.14607","DOIUrl":"https://doi.org/10.48550/arXiv.2401.14607","url":null,"abstract":"Bots have been in the spotlight for many social media studies, for they have been observed to be participating in the manipulation of information and opinions on social media. These studies analyzed the activity and influence of bots in a variety of contexts: elections, protests, health communication and so forth. Prior to this analyzes is the identification of bot accounts to segregate the class of social media users. In this work, we propose an ensemble method for bot detection, designing a multi-platform bot detection architecture to handle several problems along the bot detection pipeline: incomplete data input, minimal feature engineering, optimized classifiers for each data field, and also eliminate the need for a threshold value for classification determination. With these design decisions, we generalize our bot detection framework across Twitter, Reddit and Instagram. We also perform feature importance analysis, observing that the entropy of names and number of interactions (retweets/shares) are important factors in bot determination. Finally, we apply our multi-platform bot detector to the US 2020 presidential elections to identify and analyze bot activity across multiple social media platforms, showcasing the difference in online discourse of bots from different platforms.","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"42 2","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140493222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Team performance analysis in football match using network analysis-based approach 利用基于网络分析的方法分析足球比赛中的团队表现
Pub Date : 2024-01-05 DOI: 10.1007/s13278-023-01180-y
M. Nath, Tapan Chowdhury
{"title":"Team performance analysis in football match using network analysis-based approach","authors":"M. Nath, Tapan Chowdhury","doi":"10.1007/s13278-023-01180-y","DOIUrl":"https://doi.org/10.1007/s13278-023-01180-y","url":null,"abstract":"","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"28 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of intelligent system based on synthesis of affective signals and deep neural networks to foster mental health of the Indian virtual community 开发基于情感信号和深度神经网络合成的智能系统,促进印度虚拟社区的心理健康
Pub Date : 2024-01-04 DOI: 10.1007/s13278-023-01179-5
Mandeep Kaur Arora, Jaspreet Singh, Anju Singh
{"title":"Development of intelligent system based on synthesis of affective signals and deep neural networks to foster mental health of the Indian virtual community","authors":"Mandeep Kaur Arora, Jaspreet Singh, Anju Singh","doi":"10.1007/s13278-023-01179-5","DOIUrl":"https://doi.org/10.1007/s13278-023-01179-5","url":null,"abstract":"","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"29 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A longitudinal dataset and analysis of Twitter ISIS users and propaganda 推特 ISIS 用户和宣传的纵向数据集与分析
Pub Date : 2024-01-03 DOI: 10.1007/s13278-023-01177-7
Younes Karimi, Anna Squicciarini, Peter Kent Forster
{"title":"A longitudinal dataset and analysis of Twitter ISIS users and propaganda","authors":"Younes Karimi, Anna Squicciarini, Peter Kent Forster","doi":"10.1007/s13278-023-01177-7","DOIUrl":"https://doi.org/10.1007/s13278-023-01177-7","url":null,"abstract":"","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"23 5","pages":"1-23"},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139121914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A longitudinal dataset and analysis of Twitter ISIS users and propaganda 推特 ISIS 用户和宣传的纵向数据集与分析
Pub Date : 2024-01-03 DOI: 10.1007/s13278-023-01177-7
Younes Karimi, Anna Squicciarini, Peter Kent Forster
{"title":"A longitudinal dataset and analysis of Twitter ISIS users and propaganda","authors":"Younes Karimi, Anna Squicciarini, Peter Kent Forster","doi":"10.1007/s13278-023-01177-7","DOIUrl":"https://doi.org/10.1007/s13278-023-01177-7","url":null,"abstract":"","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"23 5","pages":"1-23"},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139118776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of heterogeneous graph embedding methods based on deep learning techniques and comparing their efficiency in node classification 基于深度学习技术的异构图嵌入方法综述及其节点分类效率比较
Pub Date : 2024-01-03 DOI: 10.1007/s13278-023-01178-6
Azad Noori, M. Balafar, Asgarali Bouyer, Khosro Salmani
{"title":"Review of heterogeneous graph embedding methods based on deep learning techniques and comparing their efficiency in node classification","authors":"Azad Noori, M. Balafar, Asgarali Bouyer, Khosro Salmani","doi":"10.1007/s13278-023-01178-6","DOIUrl":"https://doi.org/10.1007/s13278-023-01178-6","url":null,"abstract":"","PeriodicalId":504197,"journal":{"name":"Social Network Analysis and Mining","volume":"20 1","pages":"1-24"},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139118795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Social Network Analysis and Mining
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1