首页 > 最新文献

bioRxiv最新文献

英文 中文
Identifying crosstalks among post-translational modifications in lung cancer proteomic data 识别肺癌蛋白质组数据中翻译后修饰的交叉关系
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.06.606765
Shengzhi Lai, Shuaijian Dai, Peize Zhao, Chen Zhou, Ning Li, Weichuan Yu
In a lung squamous cell carcinoma data set containing over 20 million tandem mass spectra, we identified 860 peptides with post-translational modifications (PTMs) that were significantly upregulated in lung cancer samples as compared to normal samples using our new search engine named PIPI3. Among the modified peptides related to upregulated gene ontology terms, about 50% carried multiple PTMs. PIPI3 demonstrated its enabling power to provide insight into PTM crosstalk research.
在一个包含两千多万条串联质谱的肺鳞癌数据集中,我们使用名为PIPI3的新搜索引擎发现了860个具有翻译后修饰(PTM)的肽段,与正常样本相比,这些肽段在肺癌样本中显著上调。在与上调基因本体术语相关的修饰肽段中,约50%带有多个PTM。PIPI3证明了它在PTM串扰研究中的强大洞察力。
{"title":"Identifying crosstalks among post-translational modifications in lung cancer proteomic data","authors":"Shengzhi Lai, Shuaijian Dai, Peize Zhao, Chen Zhou, Ning Li, Weichuan Yu","doi":"10.1101/2024.08.06.606765","DOIUrl":"https://doi.org/10.1101/2024.08.06.606765","url":null,"abstract":"In a lung squamous cell carcinoma data set containing over 20 million tandem mass spectra, we identified 860 peptides with post-translational modifications (PTMs) that were significantly upregulated in lung cancer samples as compared to normal samples using our new search engine named PIPI3. Among the modified peptides related to upregulated gene ontology terms, about 50% carried multiple PTMs. PIPI3 demonstrated its enabling power to provide insight into PTM crosstalk research.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"45 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence of orphan quality control pathways at a ubiquitin chain-elongating ligase 泛素链延长连接酶的孤儿质量控制途径趋同
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.07.607117
Sara Carrillo Roas, Yuichi Yagita, Paul Murphy, R. Kurzbauer, Tim Clausen, Eszter Zavodszky, R. Hegde
Unassembled and partially assembled subunits of multi-protein complexes have emerged as major quality control clients, particularly under conditions of imbalanced gene expression such as stress, aging, and aneuploidy. The factors and mechanisms that eliminate such orphan subunits to maintain protein homeostasis are incompletely defined. Here, we show that the UBR4-KCMF1 ubiquitin ligase complex is required for efficient degradation of multiple unrelated orphan subunits from the chaperonin, proteasome cap, proteasome core, and a protein targeting complex. Epistasis analysis in cells and reconstitution studies in vitro show that the UBR4-KCMF1 complex acts downstream of a priming ubiquitin ligase that first mono-ubiquitinates orphans. UBR4 recognizes both the orphan and its mono-ubiquitin and builds a K48-linked poly-ubiquitin degradation signal. The discovery of a convergence point for multiple quality control pathways may explain why aneuploid cells are especially sensitive to loss of UBR4 or KCMF1 and identifies a potential vulnerability across many cancers.
多蛋白复合物中未组装和部分组装的亚基已成为主要的质量控制客户,尤其是在基因表达失衡的情况下,如压力、衰老和非整倍体。消除这些孤儿亚基以维持蛋白质平衡的因素和机制尚未完全明确。在这里,我们发现 UBR4-KCMF1 泛素连接酶复合物是高效降解来自伴侣蛋白、蛋白酶体帽、蛋白酶体核心和蛋白靶向复合物的多个无关孤儿亚基的必要条件。细胞中的外显子分析和体外重组研究表明,UBR4-KCMF1 复合物作用于引物泛素连接酶的下游,而引物泛素连接酶首先对孤儿进行单泛素化。UBR4 可识别孤儿及其单泛素,并建立一个与 K48 链接的多泛素降解信号。多种质量控制途径汇聚点的发现可以解释为什么非整倍体细胞对 UBR4 或 KCMF1 的缺失特别敏感,并确定了许多癌症的潜在脆弱性。
{"title":"Convergence of orphan quality control pathways at a ubiquitin chain-elongating ligase","authors":"Sara Carrillo Roas, Yuichi Yagita, Paul Murphy, R. Kurzbauer, Tim Clausen, Eszter Zavodszky, R. Hegde","doi":"10.1101/2024.08.07.607117","DOIUrl":"https://doi.org/10.1101/2024.08.07.607117","url":null,"abstract":"Unassembled and partially assembled subunits of multi-protein complexes have emerged as major quality control clients, particularly under conditions of imbalanced gene expression such as stress, aging, and aneuploidy. The factors and mechanisms that eliminate such orphan subunits to maintain protein homeostasis are incompletely defined. Here, we show that the UBR4-KCMF1 ubiquitin ligase complex is required for efficient degradation of multiple unrelated orphan subunits from the chaperonin, proteasome cap, proteasome core, and a protein targeting complex. Epistasis analysis in cells and reconstitution studies in vitro show that the UBR4-KCMF1 complex acts downstream of a priming ubiquitin ligase that first mono-ubiquitinates orphans. UBR4 recognizes both the orphan and its mono-ubiquitin and builds a K48-linked poly-ubiquitin degradation signal. The discovery of a convergence point for multiple quality control pathways may explain why aneuploid cells are especially sensitive to loss of UBR4 or KCMF1 and identifies a potential vulnerability across many cancers.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"57 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VC2 regulates baseline vicine content in faba bean VC2 调节蚕豆中的基线维卡因含量
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.06.606773
S. Ugwuanyi, M. Makhoul, A. Golicz, C. Obermeier, Rod J. Snowdon
Faba bean (Vicia faba) is a valuable legume crop desired globally for its high nutritional composition. However, the seed vicine and convicine (v-c) content reduces the nutritional quality of faba bean protein and can induce favism in individuals with glucose-6-phosphate dehydrogenase deficiency. Recently, VC1 gene, encoding a bi-functional riboflavin protein, was reported to be responsible for initiating the biosynthetic pathway in V. faba. In low v-c cultivars, a 2 bp insertion in this gene results in a loss of function, but the mutation only partially eliminates v-c biosynthesis, indicating the involvement of other genes. Here, we demonstrate that a novel V. faba riboflavin gene, VC2, is responsible for the residual v-c contents in faba bean. VC2 shares nearly identical functional domains with VC1 and has GTP cyclohydrolase II activity, catalyzing the conversion of GTP into an intermediate molecule in the biosynthetic pathway. Gene expression analysis reveals that VC2 contributes a minor effect to the trait, accounting for approximately 5-10% of total riboflavin gene transcripts which significantly correlates with the baseline contents in low v-c cultivars. Our results illustrate that cultivars carrying the 2 bp inactivating insertion in VC1 still have residual v-c levels due to VC2 activity. Furthermore, we find that VC1 has multiple alleles and exhibits copy number variations, complicating molecular marker development. Conversely, single nucleotide polymorphisms within VC2 provide a reliable alternative for marker-assisted selection in faba bean breeding. In conclusion, our study elucidates the complex genetic regulation of v-c biosynthesis and provides valuable insights to facilitate its elimination in faba bean.
蚕豆(Vicia faba)是一种珍贵的豆类作物,因其营养成分高而受到全球的青睐。然而,种子中的黄豆碱和卷心菜碱(v-c)含量会降低蚕豆蛋白的营养质量,并可能诱发葡萄糖-6-磷酸脱氢酶缺乏症患者的蚕豆中毒。最近有报道称,编码双功能核黄素蛋白的 VC1 基因负责启动蚕豆的生物合成途径。在低 v-c 栽培品种中,该基因的 2 bp 插入导致功能缺失,但该突变仅部分消除了 v-c 的生物合成,表明还有其他基因的参与。在这里,我们证明了一个新的蚕豆核黄素基因 VC2 是造成蚕豆中 v-c 含量残留的原因。VC2 与 VC1 的功能域几乎相同,具有 GTP 环醇酶 II 活性,可催化 GTP 转化为生物合成途径中的中间分子。基因表达分析表明,VC2 对性状的影响较小,约占核黄素基因总转录本的 5-10%,这与低 v-c 栽培品种的基线含量显著相关。我们的结果表明,由于 VC2 的活性,在 VC1 中携带 2 bp 失活插入片段的栽培品种仍有残余的 v-c 水平。此外,我们还发现 VC1 有多个等位基因,并表现出拷贝数变异,这使得分子标记的开发变得更加复杂。相反,VC2 中的单核苷酸多态性为蚕豆育种中的标记辅助选择提供了可靠的替代方法。总之,我们的研究阐明了 v-c 生物合成的复杂遗传调控,并为促进消除蚕豆中的 v-c 提供了宝贵的见解。
{"title":"VC2 regulates baseline vicine content in faba bean","authors":"S. Ugwuanyi, M. Makhoul, A. Golicz, C. Obermeier, Rod J. Snowdon","doi":"10.1101/2024.08.06.606773","DOIUrl":"https://doi.org/10.1101/2024.08.06.606773","url":null,"abstract":"Faba bean (Vicia faba) is a valuable legume crop desired globally for its high nutritional composition. However, the seed vicine and convicine (v-c) content reduces the nutritional quality of faba bean protein and can induce favism in individuals with glucose-6-phosphate dehydrogenase deficiency. Recently, VC1 gene, encoding a bi-functional riboflavin protein, was reported to be responsible for initiating the biosynthetic pathway in V. faba. In low v-c cultivars, a 2 bp insertion in this gene results in a loss of function, but the mutation only partially eliminates v-c biosynthesis, indicating the involvement of other genes. Here, we demonstrate that a novel V. faba riboflavin gene, VC2, is responsible for the residual v-c contents in faba bean. VC2 shares nearly identical functional domains with VC1 and has GTP cyclohydrolase II activity, catalyzing the conversion of GTP into an intermediate molecule in the biosynthetic pathway. Gene expression analysis reveals that VC2 contributes a minor effect to the trait, accounting for approximately 5-10% of total riboflavin gene transcripts which significantly correlates with the baseline contents in low v-c cultivars. Our results illustrate that cultivars carrying the 2 bp inactivating insertion in VC1 still have residual v-c levels due to VC2 activity. Furthermore, we find that VC1 has multiple alleles and exhibits copy number variations, complicating molecular marker development. Conversely, single nucleotide polymorphisms within VC2 provide a reliable alternative for marker-assisted selection in faba bean breeding. In conclusion, our study elucidates the complex genetic regulation of v-c biosynthesis and provides valuable insights to facilitate its elimination in faba bean.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"5 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunturi virus isolates and metagenome-assembled viral genomes provide insights into the virome of Acidobacteriota in Arctic tundra soils 屯图里病毒分离物和元基因组组装病毒基因组为了解北极苔原土壤中酸性杆菌的病毒组提供了线索
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.08.607240
Tatiana Demina, Heli Marttila, I. Pessi, Minna K. Männistö, B. Dutilh, Simon Roux, J. Hultman
Acidobacteriota are phylogenetically and physiologically diverse soil bacteria that play important roles in key ecological processes. Still, surprisingly little is known about their viruses. Here, we report five virus isolates, Tunturi 1-5, that were obtained from Arctic tundra soils, Kilpisjärvi, Finland (69°N), using Tunturibacter spp. strains as hosts. The new virus isolates have tailed particles with podo- (Tunturi 1, 2, 3), sipho- (Tunturi 4), or myovirus-like (Tunturi 5) morphologies. The dsDNA genomes of the viral isolates are 63–98 kbp long, except Tunturi 5, which is a jumbo phage with a 309-kbp genome. Tunturi 1 and Tunturi 2 share 88% overall nucleotide identity, while the other three are not related to one another. Over half of the open reading frames in Tunturi genomes have no homologs in the NCBI nr database. Viral diversity in Kilpisjärvi soils was further assessed using a metagenomic approach. A total of 1938 viral operational taxonomic units (vOTUs) were extracted from bulk soil metagenomes, of which 46 represented >90% complete virus genomes. Almost all vOTUs (98%) were assigned to the class Caudoviricetes. For 338 vOTUs, putative hosts were predicted, including Acidobacteriota and other common soil phyla involved in carbon and nitrogen cycling. We also observed 16 putative Terriglobia-associated proviruses in Kilpisjärvi soils, being related to proviruses originating from soils and other distant biomes. Approximately genus- or higher-level similarities could be observed between Tunturi viruses, Kilpisjärvi vOTUs, and other soil vOTUs, suggesting some shared viral diversity across soils. On a local scale, viral communities, including acidobacterial vOTUs, were habitat-specific, being driven by the same environmental factors as their host communities: soil moisture, SOM, C, N content and C:N ratio. This study represents a comprehensive analysis of Acidobacteriota-associated viruses residing in Arctic tundra soils, providing isolates as laboratory models for future studies and adding insights into the viral diversity and virus-host interactions in these climate-critical soils.
酸性细菌群是系统发育和生理上多种多样的土壤细菌,在关键的生态过程中发挥着重要作用。但令人惊讶的是,人们对它们的病毒知之甚少。在此,我们以 Tunturibacter spp.菌株为宿主,报告了从芬兰(北纬 69°)Kilpisjärvi的北极苔原土壤中获得的五种病毒分离物(Tunturi 1-5)。新分离出的病毒具有荚膜(Tunturi 1、2、3)、虹吸(Tunturi 4)或肌病毒样(Tunturi 5)形态的尾状颗粒。除 Tunturi 5 外,其他病毒分离物的 dsDNA 基因组长度为 63-98 kbp,Tunturi 5 是一个巨型噬菌体,基因组长度为 309 kbp。Tunturi 1 和 Tunturi 2 有 88% 的核苷酸相同度,而其他三个噬菌体的核苷酸相同度则互不相关。Tunturi 基因组中一半以上的开放阅读框在 NCBI nr 数据库中没有同源物。采用元基因组学方法进一步评估了基尔皮斯亚维土壤中的病毒多样性。从大块土壤元基因组中共提取了 1938 个病毒操作分类单元(vOTUs),其中 46 个代表了大于 90% 的完整病毒基因组。几乎所有的 vOTUs(98%)都被归入 Caudoviricetes 类。我们预测了 338 个 vOTU 的假定宿主,其中包括酸性菌群(Acidobacteriota)和其他参与碳氮循环的常见土壤系统。我们还在Kilpisjärvi土壤中观察到了16个与Terriglobia相关的假定病毒,它们与来自土壤和其他遥远生物群落的病毒有关。在Tunturi病毒、Kilpisjärvi vOTU和其他土壤vOTU之间可以观察到大约属或更高级别的相似性,这表明土壤中存在一些共同的病毒多样性。在局部范围内,病毒群落(包括酸性细菌 vOTUs)具有特定的生境,受与其宿主群落相同的环境因素驱动:土壤湿度、SOM、C、N 含量和 C:N 比率。这项研究是对北极苔原土壤中酸性细菌相关病毒的一次全面分析,为未来研究提供了作为实验室模型的分离物,并增加了对这些气候关键土壤中病毒多样性和病毒-宿主相互作用的了解。
{"title":"Tunturi virus isolates and metagenome-assembled viral genomes provide insights into the virome of Acidobacteriota in Arctic tundra soils","authors":"Tatiana Demina, Heli Marttila, I. Pessi, Minna K. Männistö, B. Dutilh, Simon Roux, J. Hultman","doi":"10.1101/2024.08.08.607240","DOIUrl":"https://doi.org/10.1101/2024.08.08.607240","url":null,"abstract":"Acidobacteriota are phylogenetically and physiologically diverse soil bacteria that play important roles in key ecological processes. Still, surprisingly little is known about their viruses. Here, we report five virus isolates, Tunturi 1-5, that were obtained from Arctic tundra soils, Kilpisjärvi, Finland (69°N), using Tunturibacter spp. strains as hosts. The new virus isolates have tailed particles with podo- (Tunturi 1, 2, 3), sipho- (Tunturi 4), or myovirus-like (Tunturi 5) morphologies. The dsDNA genomes of the viral isolates are 63–98 kbp long, except Tunturi 5, which is a jumbo phage with a 309-kbp genome. Tunturi 1 and Tunturi 2 share 88% overall nucleotide identity, while the other three are not related to one another. Over half of the open reading frames in Tunturi genomes have no homologs in the NCBI nr database. Viral diversity in Kilpisjärvi soils was further assessed using a metagenomic approach. A total of 1938 viral operational taxonomic units (vOTUs) were extracted from bulk soil metagenomes, of which 46 represented >90% complete virus genomes. Almost all vOTUs (98%) were assigned to the class Caudoviricetes. For 338 vOTUs, putative hosts were predicted, including Acidobacteriota and other common soil phyla involved in carbon and nitrogen cycling. We also observed 16 putative Terriglobia-associated proviruses in Kilpisjärvi soils, being related to proviruses originating from soils and other distant biomes. Approximately genus- or higher-level similarities could be observed between Tunturi viruses, Kilpisjärvi vOTUs, and other soil vOTUs, suggesting some shared viral diversity across soils. On a local scale, viral communities, including acidobacterial vOTUs, were habitat-specific, being driven by the same environmental factors as their host communities: soil moisture, SOM, C, N content and C:N ratio. This study represents a comprehensive analysis of Acidobacteriota-associated viruses residing in Arctic tundra soils, providing isolates as laboratory models for future studies and adding insights into the viral diversity and virus-host interactions in these climate-critical soils.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"6 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia determine ß-amyloid plaque burden but are non-essential for downstream pathology 小胶质细胞决定了ß-淀粉样蛋白斑块的负担,但对下游病理过程并非必不可少
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.06.606795
Mosi Li, Kris Holt, Katherine Ridley, Jing Qiu, Kirsty Haddow, Deepali Vasoya, Xin He, J. Tulloch, Declan King, David A. Hume, Clare Pridans, O. Dando, Tara L Spires-Jones, Giles E. Hardingham
Evidence points to a role for microglia in Alzheimer’s disease (AD) risk, although their position in the pathological cascade is incompletely understood, prompting us to generate a model of ß-amyloidopathy lacking microglia. We find evidence that microglia promote plaque formation and creation of an Aß fibril-rich zone surrounding the plaque core. However, plaque-proximal reactive astrogliosis, synapse loss, and neurite dystrophy are still observed in the absence of microglia.
有证据表明小胶质细胞在阿尔茨海默病(AD)风险中的作用,尽管它们在病理级联中的位置还不完全清楚,这促使我们建立了一个缺乏小胶质细胞的ß-淀粉样蛋白病模型。我们发现有证据表明,小胶质细胞能促进斑块形成,并在斑块核心周围形成富含ß纤维的区域。然而,在缺乏小胶质细胞的情况下,仍可观察到斑块近端反应性星形胶质细胞增多、突触丧失和神经元萎缩。
{"title":"Microglia determine ß-amyloid plaque burden but are non-essential for downstream pathology","authors":"Mosi Li, Kris Holt, Katherine Ridley, Jing Qiu, Kirsty Haddow, Deepali Vasoya, Xin He, J. Tulloch, Declan King, David A. Hume, Clare Pridans, O. Dando, Tara L Spires-Jones, Giles E. Hardingham","doi":"10.1101/2024.08.06.606795","DOIUrl":"https://doi.org/10.1101/2024.08.06.606795","url":null,"abstract":"Evidence points to a role for microglia in Alzheimer’s disease (AD) risk, although their position in the pathological cascade is incompletely understood, prompting us to generate a model of ß-amyloidopathy lacking microglia. We find evidence that microglia promote plaque formation and creation of an Aß fibril-rich zone surrounding the plaque core. However, plaque-proximal reactive astrogliosis, synapse loss, and neurite dystrophy are still observed in the absence of microglia.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"115 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optics-free Spatial Genomics for Mapping Mouse Brain Aging 用于绘制小鼠大脑衰老图谱的无光学空间基因组学技术
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.06.606712
Abdulraouf Abdulraouf, Weirong Jiang, Zihan Xu, Zehao Zhang, Samuel Isakov, Tanvir Raihan, Wei Zhou, Junyue Cao
Spatial transcriptomics has revolutionized our understanding of cellular network dynamics in aging and disease by enabling the mapping of molecular and cellular organization across various anatomical locations. Despite these advances, current methods face significant challenges in throughput and cost, limiting their utility for comprehensive studies. To address these limitations, we introduce IRISeq (Imaging Reconstruction using Indexed Sequencing), a optics-free spatial transcriptomics platform that eliminates the need for predefined capture arrays or extensive imaging, allowing for the rapid and cost-effective processing of multiple tissue sections simultaneously. Its capacity to reconstruct images based solely on sequencing local DNA interactions allows for profiling of tissues without size constraints and across varied resolutions. Applying IRISeq, we examined gene expression and cellular dynamics in thirty brain regions of both adult and aged mice, uncovering region-specific changes in gene expression associated with aging. Further cell type-centric analysis further identified age-related cell subtypes and intricate changes in cell interactions that are distinct to certain spatial niches, emphasizing the unique aspects of aging in different brain regions. The affordability and simplicity of IRISeq position it as a versatile tool for mapping region-specific gene expression and cellular interactions across various biological systems. One Sentence Summary: IRISeq, an innovative optics-free spatial transcriptomics method, uncovers aging-related changes in spatial gene expression and focal cell interactions in brain aging.
空间转录组学通过绘制不同解剖位置的分子和细胞组织图,彻底改变了我们对衰老和疾病中细胞网络动态的理解。尽管取得了这些进展,但目前的方法在通量和成本方面仍面临巨大挑战,限制了它们在综合研究中的应用。为了解决这些局限性,我们推出了 IRISeq(使用索引测序的成像重建),这是一种无光学器件的空间转录组学平台,无需预定义的捕获阵列或大量成像,可同时快速、经济高效地处理多个组织切片。它能仅根据局部 DNA 相互作用的测序结果重建图像,因此可以不受尺寸限制地对不同分辨率的组织进行分析。应用 IRISeq,我们检测了成年小鼠和老年小鼠 30 个脑区的基因表达和细胞动态,发现了与衰老相关的特定区域基因表达变化。以细胞类型为中心的进一步分析进一步确定了与年龄相关的细胞亚型和细胞相互作用的复杂变化,这些变化与特定的空间壁龛不同,强调了不同脑区衰老的独特方面。IRISeq 价格低廉、操作简单,是绘制各种生物系统中特定区域基因表达和细胞相互作用图谱的多功能工具。一句话总结:IRISeq 是一种创新的免光学空间转录组学方法,它揭示了大脑衰老过程中与衰老相关的空间基因表达和病灶细胞相互作用的变化。
{"title":"Optics-free Spatial Genomics for Mapping Mouse Brain Aging","authors":"Abdulraouf Abdulraouf, Weirong Jiang, Zihan Xu, Zehao Zhang, Samuel Isakov, Tanvir Raihan, Wei Zhou, Junyue Cao","doi":"10.1101/2024.08.06.606712","DOIUrl":"https://doi.org/10.1101/2024.08.06.606712","url":null,"abstract":"Spatial transcriptomics has revolutionized our understanding of cellular network dynamics in aging and disease by enabling the mapping of molecular and cellular organization across various anatomical locations. Despite these advances, current methods face significant challenges in throughput and cost, limiting their utility for comprehensive studies. To address these limitations, we introduce IRISeq (Imaging Reconstruction using Indexed Sequencing), a optics-free spatial transcriptomics platform that eliminates the need for predefined capture arrays or extensive imaging, allowing for the rapid and cost-effective processing of multiple tissue sections simultaneously. Its capacity to reconstruct images based solely on sequencing local DNA interactions allows for profiling of tissues without size constraints and across varied resolutions. Applying IRISeq, we examined gene expression and cellular dynamics in thirty brain regions of both adult and aged mice, uncovering region-specific changes in gene expression associated with aging. Further cell type-centric analysis further identified age-related cell subtypes and intricate changes in cell interactions that are distinct to certain spatial niches, emphasizing the unique aspects of aging in different brain regions. The affordability and simplicity of IRISeq position it as a versatile tool for mapping region-specific gene expression and cellular interactions across various biological systems. One Sentence Summary: IRISeq, an innovative optics-free spatial transcriptomics method, uncovers aging-related changes in spatial gene expression and focal cell interactions in brain aging.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"46 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection of genome structural variation in normal cells and tissues by single molecule sequencing 通过单分子测序检测正常细胞和组织的基因组结构变异
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.08.607188
Johanna Heid, Zhenqiu Huang, Moonsook Lee, Sergey Makhortov, Elizabeth Pan, Cristina Montagna, Shixiang Sun, Jan Vijg, A. Maslov
Detecting somatic mutations in normal cells and tissues is notoriously challenging due to their low abundance, orders of magnitude below the sequencing error rate. While several techniques, such as single-cell and single-molecule sequencing, have been developed to identify somatic mutations, they are insufficient for detecting genomic structural variants (SVs), which have a significantly greater impact than single-nucleotide variants (SNVs). We introduce Single-Molecule Mutation Sequencing for Structural Variants (SMM-SV-seq), a novel method combining Tn5-mediated, chimera-free library preparation with the precision of error-corrected next-generation sequencing (ecNGS). This approach enhances SV detection accuracy without relying on independent supporting sequencing reads. Our validation studies on human primary fibroblasts treated with varying concentrations of the clastogen bleomycin demonstrated a significant, up to tenfold and dose-dependent, increase in deletions and translocations 24 hours post-treatment. Evaluating SMM-SV-seq’s performance against established computational tools for SV detection, such as Manta and DELLY, using a well-characterized human cell line, SMM-SV-seq showed precision and recall rates of 61.9% and 85.8%, respectively, significantly outperforming Manta (10% precision, 23% recall) and DELLY (15% precision, 32% recall). Using SMM-SV-seq, we documented clear, direct evidence of negative selection against structural variants over time. After a single 2 Gy dose of ionizing radiation, SVs in normal human primary fibroblasts peaked at 24 hours post-intervention and then declined to nearly background levels by day six, highlighting the cellular mechanisms that selectively disadvantage cells harboring these mutations. Additionally, SMM-SV-seq revealed that BRCA1-deficient human breast epithelial cells are more susceptible to the mutagenic effects of ionizing radiation compared to BRCA1-proficient isogenic control cells, suggesting a potential molecular mechanism for increased breast cancer risk in BRCA1 mutation carriers. SMM-SV-seq represents a significant advancement in genomic analysis, enabling the accurate detection of somatic structural variants in normal cells and tissues for the first time. This method complements our previously published Single-Molecule Mutation sequencing (SMM-seq), effective for detecting single-nucleotide variants (SNVs) and small insertions and deletions (INDELs). By addressing challenges such as self-ligation in library preparation and leveraging a powerful ecNGS strategy, SMM-SV-seq enhances the robustness of our genomic analysis toolkit. This breakthrough paves the way for new research into genetic variability and mutation processes, offering deeper insights that could advance our understanding of aging, cancer, and other human diseases.
检测正常细胞和组织中的体细胞突变是一项众所周知的挑战,因为它们的丰度很低,比测序错误率低几个数量级。虽然单细胞和单分子测序等几种技术已被开发出来用于识别体细胞突变,但它们不足以检测基因组结构变异(SV),而结构变异的影响远远大于单核苷酸变异(SNV)。我们介绍了结构变异的单分子突变测序(SMM-SV-seq),这是一种新型方法,它将 Tn5 介导的无嵌合体文库制备与误差校正新一代测序(ecNGS)的精确性相结合。这种方法无需依赖独立的支持测序读数即可提高 SV 检测的准确性。我们对使用不同浓度的致畸原博莱霉素处理的人类原代成纤维细胞进行了验证研究,结果表明,在处理后 24 小时内,缺失和易位显著增加,最高可达十倍,且呈剂量依赖性。利用一个特性良好的人类细胞系,评估 SMM-SV-seq 与 Manta 和 DELLY 等 SV 检测计算工具的性能,结果显示 SMM-SV-seq 的精确率和召回率分别为 61.9% 和 85.8%,明显优于 Manta(精确率 10%,召回率 23%)和 DELLY(精确率 15%,召回率 32%)。利用 SMM-SV-seq 技术,我们记录了针对结构变异的负选择随时间推移而发生的明确、直接的证据。在单次 2 Gy 剂量的电离辐射后,正常人原代成纤维细胞中的 SVs 在干预后 24 小时达到峰值,然后在第六天下降到接近本底水平,这突显了选择性地使携带这些变异的细胞处于不利地位的细胞机制。此外,SMM-SV-seq 发现,与 BRCA1 基因缺陷的同源对照细胞相比,BRCA1 基因缺陷的人类乳腺上皮细胞更容易受到电离辐射的诱变效应的影响,这表明 BRCA1 基因突变携带者患乳腺癌风险增加的潜在分子机制。SMM-SV-seq 是基因组分析领域的一大进步,它首次实现了对正常细胞和组织中体细胞结构变异的准确检测。这种方法是对我们之前发表的单分子突变测序(SMM-seq)的补充,它能有效地检测单核苷酸变异(SNV)以及小的插入和缺失(INDEL)。通过解决文库制备中的自连接等难题和利用强大的 ecNGS 策略,SMM-SV-seq 增强了我们基因组分析工具包的稳健性。这一突破为基因变异和突变过程的新研究铺平了道路,提供了更深入的见解,可以促进我们对衰老、癌症和其他人类疾病的了解。
{"title":"Detection of genome structural variation in normal cells and tissues by single molecule sequencing","authors":"Johanna Heid, Zhenqiu Huang, Moonsook Lee, Sergey Makhortov, Elizabeth Pan, Cristina Montagna, Shixiang Sun, Jan Vijg, A. Maslov","doi":"10.1101/2024.08.08.607188","DOIUrl":"https://doi.org/10.1101/2024.08.08.607188","url":null,"abstract":"Detecting somatic mutations in normal cells and tissues is notoriously challenging due to their low abundance, orders of magnitude below the sequencing error rate. While several techniques, such as single-cell and single-molecule sequencing, have been developed to identify somatic mutations, they are insufficient for detecting genomic structural variants (SVs), which have a significantly greater impact than single-nucleotide variants (SNVs). We introduce Single-Molecule Mutation Sequencing for Structural Variants (SMM-SV-seq), a novel method combining Tn5-mediated, chimera-free library preparation with the precision of error-corrected next-generation sequencing (ecNGS). This approach enhances SV detection accuracy without relying on independent supporting sequencing reads. Our validation studies on human primary fibroblasts treated with varying concentrations of the clastogen bleomycin demonstrated a significant, up to tenfold and dose-dependent, increase in deletions and translocations 24 hours post-treatment. Evaluating SMM-SV-seq’s performance against established computational tools for SV detection, such as Manta and DELLY, using a well-characterized human cell line, SMM-SV-seq showed precision and recall rates of 61.9% and 85.8%, respectively, significantly outperforming Manta (10% precision, 23% recall) and DELLY (15% precision, 32% recall). Using SMM-SV-seq, we documented clear, direct evidence of negative selection against structural variants over time. After a single 2 Gy dose of ionizing radiation, SVs in normal human primary fibroblasts peaked at 24 hours post-intervention and then declined to nearly background levels by day six, highlighting the cellular mechanisms that selectively disadvantage cells harboring these mutations. Additionally, SMM-SV-seq revealed that BRCA1-deficient human breast epithelial cells are more susceptible to the mutagenic effects of ionizing radiation compared to BRCA1-proficient isogenic control cells, suggesting a potential molecular mechanism for increased breast cancer risk in BRCA1 mutation carriers. SMM-SV-seq represents a significant advancement in genomic analysis, enabling the accurate detection of somatic structural variants in normal cells and tissues for the first time. This method complements our previously published Single-Molecule Mutation sequencing (SMM-seq), effective for detecting single-nucleotide variants (SNVs) and small insertions and deletions (INDELs). By addressing challenges such as self-ligation in library preparation and leveraging a powerful ecNGS strategy, SMM-SV-seq enhances the robustness of our genomic analysis toolkit. This breakthrough paves the way for new research into genetic variability and mutation processes, offering deeper insights that could advance our understanding of aging, cancer, and other human diseases.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"28 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iota oscillations (25-35 Hz) during wake and REM sleep in children and young adults 儿童和青少年在清醒和快速眼动睡眠期间的 Iota 振荡(25-35 赫兹
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.06.606898
Sophia Snipes
High-frequency brain oscillations in humans are currently categorized into beta (13-30 Hz) and gamma (>30 Hz). Here, I introduce a new class of oscillations between 25 and 35 Hz, which I propose to call “iota.” Iota oscillations have low amplitudes but can still be measured with surface electroencephalography (EEG). Within an individual, iota has a narrow spectral bandwidth of 2-4 Hz, thus distinguishing it from broadband beta and gamma. Iota oscillations occur as sustained bursts during both wakefulness and REM sleep but do not appear during NREM sleep. They are only found in a minority of individuals, more in children than in adults. Overall, iota oscillations are challenging to detect but could serve as a marker of both brain development and states of vigilance.
目前,人类大脑的高频振荡分为贝塔振荡(13-30 赫兹)和伽马振荡(大于 30 赫兹)。在此,我引入了一类新的振荡,频率在 25 到 35 赫兹之间,我建议将其称为 "iota"。Iota 振荡振幅较低,但仍可通过表面脑电图(EEG)测量。在个体内部,iota 的频谱带宽较窄,仅为 2-4 Hz,因此有别于宽带的 beta 和 gamma。Iota 振荡在清醒和快速动眼期睡眠中都会出现持续的爆发,但在快速动眼期睡眠中不会出现。它们只出现在少数人身上,儿童多于成人。总的来说,iota 振荡的检测具有挑战性,但可以作为大脑发育和警觉状态的标志。
{"title":"Iota oscillations (25-35 Hz) during wake and REM sleep in children and young adults","authors":"Sophia Snipes","doi":"10.1101/2024.08.06.606898","DOIUrl":"https://doi.org/10.1101/2024.08.06.606898","url":null,"abstract":"High-frequency brain oscillations in humans are currently categorized into beta (13-30 Hz) and gamma (>30 Hz). Here, I introduce a new class of oscillations between 25 and 35 Hz, which I propose to call “iota.” Iota oscillations have low amplitudes but can still be measured with surface electroencephalography (EEG). Within an individual, iota has a narrow spectral bandwidth of 2-4 Hz, thus distinguishing it from broadband beta and gamma. Iota oscillations occur as sustained bursts during both wakefulness and REM sleep but do not appear during NREM sleep. They are only found in a minority of individuals, more in children than in adults. Overall, iota oscillations are challenging to detect but could serve as a marker of both brain development and states of vigilance.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"22 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generating Synthetic Task-based Brain Fingerprints for Population Neuroscience Using Deep Learning 利用深度学习为群体神经科学生成基于任务的合成大脑指纹
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.03.606469
Emin Serin, Kerstin Ritter, Gunter Schumann, Tobias Banaschewski, A. Marquand, H. Walter
Task-based functional magnetic resonance imaging (tb-fMRI) provides valuable insights into individual differences in the neural basis of cognitive functions because it links specific cognitive tasks to their evoked neural responses. Yet, it is challenging to scale to population-level data due to its cognitive demands, variations in task design across studies, and a limited number of tasks acquired in typical large-scale studies. Here, we present DeepTaskGen, a convolutional neural network (CNN) approach that enables us to generate synthetic task-based contrast maps from resting-state fMRI (rs-fMRI) data. Our method outperforms several benchmarks, exhibiting superior reconstruction performance while retaining inter-individual variation essential for biomarker development. We showcase DeepTaskGen by generating synthetic task images from the UK Biobank cohort, achieving competitive or greater performance compared to actual task contrast maps and resting-state connectomes for predicting a wide range of demographic, cognitive, and clinical variables. This approach will facilitate the study of individual differences and the generation of task-related biomarkers by enabling the generation of arbitrary functional cognitive tasks from readily available rs-fMRI data.
基于任务的功能磁共振成像(tb-fMRI)能将特定的认知任务与其诱发的神经反应联系起来,从而为认知功能神经基础的个体差异提供有价值的见解。然而,由于其认知要求、不同研究中任务设计的差异以及典型大规模研究中获取的任务数量有限,将其扩展到群体级数据具有挑战性。在此,我们介绍一种卷积神经网络(CNN)方法 DeepTaskGen,它能让我们从静息态 fMRI(rs-fMRI)数据中生成基于任务的合成对比图。我们的方法优于多项基准测试,表现出卓越的重构性能,同时保留了生物标记开发所必需的个体间差异。我们通过生成英国生物库队列中的合成任务图像展示了 DeepTaskGen,与实际任务对比图和静息态连接组相比,它在预测各种人口、认知和临床变量方面取得了具有竞争力或更高的性能。这种方法可以从随时可用的 rs-fMRI 数据中生成任意功能认知任务,从而促进个体差异研究和任务相关生物标记物的生成。
{"title":"Generating Synthetic Task-based Brain Fingerprints for Population Neuroscience Using Deep Learning","authors":"Emin Serin, Kerstin Ritter, Gunter Schumann, Tobias Banaschewski, A. Marquand, H. Walter","doi":"10.1101/2024.08.03.606469","DOIUrl":"https://doi.org/10.1101/2024.08.03.606469","url":null,"abstract":"Task-based functional magnetic resonance imaging (tb-fMRI) provides valuable insights into individual differences in the neural basis of cognitive functions because it links specific cognitive tasks to their evoked neural responses. Yet, it is challenging to scale to population-level data due to its cognitive demands, variations in task design across studies, and a limited number of tasks acquired in typical large-scale studies. Here, we present DeepTaskGen, a convolutional neural network (CNN) approach that enables us to generate synthetic task-based contrast maps from resting-state fMRI (rs-fMRI) data. Our method outperforms several benchmarks, exhibiting superior reconstruction performance while retaining inter-individual variation essential for biomarker development. We showcase DeepTaskGen by generating synthetic task images from the UK Biobank cohort, achieving competitive or greater performance compared to actual task contrast maps and resting-state connectomes for predicting a wide range of demographic, cognitive, and clinical variables. This approach will facilitate the study of individual differences and the generation of task-related biomarkers by enabling the generation of arbitrary functional cognitive tasks from readily available rs-fMRI data.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"35 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered Protein-G variants for plug-and-play applications 用于即插即用应用的工程化蛋白质-G 变体
Pub Date : 2024-08-08 DOI: 10.1101/2024.08.06.606809
Tomasz Slezak, Kelly M. O’Leary, Jinyang Li, A. Rohaim, Elena K. Davydova, A. Kossiakoff
We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner. The simplest manifestation allows multiplexed antigen detection using PG variants fused to fluorescently labeled SNAP-tags. Moreover, Fabs can be readily attached to a PG-Fc dimer module which acts as the core unit to produce plug-and-play IgG-like assemblies, and the utility can be further expanded to produce bispecific analogs using the “knobs into holes” strategy. These core PG-Fc dimer modules can be made and stored in bulk to produce off-the-shelf customized IgG entities in minutes, not days or weeks by just adding a Fab with the desired antigen specificity. In another application, the bispecific modalities form the building block for fabricating potent Bispecific T-cell Engagers (BiTEs), demonstrating their efficacy in cancer cell-killing assays. Additionally, the system can be adapted to include commercial antibodies as building blocks, greatly increasing the target space. Crystal structure analysis reveals that a few strategically positioned interactions engender the specificity between the Fab-PG variant pairs, requiring minimal changes to match the scaffolds for different possible combinations. This plug-and-play platform offers a user-friendly and versatile approach to enhance the functionality of antibody-based reagents in cell biology research.
我们已开发出一系列基于抗体的模块,这些模块可作为独立单元预制,并以即插即用的方式拼接在一起,形成功能独特强大的多功能组件。这些基本构件来自多对原生和修饰的 Fab 支架和蛋白 G (PG) 变体,这些变体通过噬菌体展示工程引入了高配对特异性。各种可能的 Fab-PG 配对提供了一个高度正交的系统,可用于以简单的方式执行具有挑战性的细胞生物学操作。最简单的表现形式是使用融合了荧光标记 SNAP 标签的 PG 变体进行多重抗原检测。此外,Fabs 可以很容易地连接到 PG-Fc 二聚体模块上,而 PG-Fc 二聚体模块是生产即插即用类 IgG 组合物的核心单元,其用途还可以进一步扩展,利用 "钮入孔 "策略生产双特异性类似物。这些核心 PG-Fc 二聚体模块可以批量生产和储存,只需添加具有所需抗原特异性的 Fab,就能在几分钟内而不是几天或几周内生产出现成的定制 IgG 实体。在另一项应用中,双特异性模式构成了制造强效双特异性 T 细胞激活剂(BiTE)的基石,在癌细胞杀伤试验中证明了它们的功效。此外,该系统还可以将商业抗体作为构建模块,从而大大增加了靶标空间。晶体结构分析表明,Fab-PG 变体对之间的特异性是由几个策略性定位的相互作用产生的,只需做极少的改动就能匹配不同可能组合的支架。这种即插即用的平台为增强细胞生物学研究中基于抗体的试剂的功能提供了一种用户友好型多功能方法。
{"title":"Engineered Protein-G variants for plug-and-play applications","authors":"Tomasz Slezak, Kelly M. O’Leary, Jinyang Li, A. Rohaim, Elena K. Davydova, A. Kossiakoff","doi":"10.1101/2024.08.06.606809","DOIUrl":"https://doi.org/10.1101/2024.08.06.606809","url":null,"abstract":"We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner. The simplest manifestation allows multiplexed antigen detection using PG variants fused to fluorescently labeled SNAP-tags. Moreover, Fabs can be readily attached to a PG-Fc dimer module which acts as the core unit to produce plug-and-play IgG-like assemblies, and the utility can be further expanded to produce bispecific analogs using the “knobs into holes” strategy. These core PG-Fc dimer modules can be made and stored in bulk to produce off-the-shelf customized IgG entities in minutes, not days or weeks by just adding a Fab with the desired antigen specificity. In another application, the bispecific modalities form the building block for fabricating potent Bispecific T-cell Engagers (BiTEs), demonstrating their efficacy in cancer cell-killing assays. Additionally, the system can be adapted to include commercial antibodies as building blocks, greatly increasing the target space. Crystal structure analysis reveals that a few strategically positioned interactions engender the specificity between the Fab-PG variant pairs, requiring minimal changes to match the scaffolds for different possible combinations. This plug-and-play platform offers a user-friendly and versatile approach to enhance the functionality of antibody-based reagents in cell biology research.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"9 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
bioRxiv
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1