Keenin R Coombs, Robert B Weladji, Øystein Holand, Knut H Røed
In polygynous systems, such as that exhibited by reindeer Rangifer tarandus, mate choice can be difficult to disentangle from male intrasexual competition because male behavior may constrain female choice. Multiple mating may provide an avenue for female mate choice, though it is difficult to identify using behavioral estimators alone. Molecular techniques address this issue by affording ecologists an opportunity to reassess mating systems from a genetic perspective. We assessed the frequency and possible explanations for multiple mating in reindeer using a genetic approach to determine the success of observed copulations in a semi-domesticated herd in Kaamanen, Finland. Behavioral and genetic data were synthesized with population characteristics over a 7-year period to test the hypothesis that, if present, polyandry in reindeer is driven by sexual harassment from sub-dominant males. We observed multiple mating in 42% of females, with as many as 60% exhibiting multiple mating in certain years. We found no evidence that multiple mating resulted from sexual harassment by sub-dominant males, suggesting that it is likely a deliberate strategy among females. Conversion rate of copulations into paternities varied with male size, with smaller males more likely to experience mismatch than larger males. Female preference for larger males persisted despite the occurrence of multiple mating, possibly suggesting a mechanism for cryptic post-copulatory selection. We suggest further research to delineate the possible influence of cryptic post-copulatory selection and multiple mating to defend against infertility in exhausted males.
{"title":"Mismatch between calf paternity and observed copulations between male and female reindeer: Multiple mating in a polygynous ungulate?","authors":"Keenin R Coombs, Robert B Weladji, Øystein Holand, Knut H Røed","doi":"10.1093/cz/zoac054","DOIUrl":"https://doi.org/10.1093/cz/zoac054","url":null,"abstract":"<p><p>In polygynous systems, such as that exhibited by reindeer <i>Rangifer tarandus</i>, mate choice can be difficult to disentangle from male intrasexual competition because male behavior may constrain female choice. Multiple mating may provide an avenue for female mate choice, though it is difficult to identify using behavioral estimators alone. Molecular techniques address this issue by affording ecologists an opportunity to reassess mating systems from a genetic perspective. We assessed the frequency and possible explanations for multiple mating in reindeer using a genetic approach to determine the success of observed copulations in a semi-domesticated herd in Kaamanen, Finland. Behavioral and genetic data were synthesized with population characteristics over a 7-year period to test the hypothesis that, if present, polyandry in reindeer is driven by sexual harassment from sub-dominant males. We observed multiple mating in 42% of females, with as many as 60% exhibiting multiple mating in certain years. We found no evidence that multiple mating resulted from sexual harassment by sub-dominant males, suggesting that it is likely a deliberate strategy among females. Conversion rate of copulations into paternities varied with male size, with smaller males more likely to experience mismatch than larger males. Female preference for larger males persisted despite the occurrence of multiple mating, possibly suggesting a mechanism for cryptic post-copulatory selection. We suggest further research to delineate the possible influence of cryptic post-copulatory selection and multiple mating to defend against infertility in exhausted males.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/55/6c/zoac054.PMC10443607.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10067969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomer Gilad, Ori Bahar, Malak Hasan, Adi Bar, Aziz Subach, Inon Scharf
Foragers use several senses to locate food, and many animals rely on vision and smell. It is beneficial not to rely on a single sense, which might fail under certain conditions. We examined the contribution of vision and smell to foraging and maze exploration under laboratory conditions using Cataglyphis desert ants as a model. Foraging intensity, measured as the number of workers entering the maze and arriving at the target as well as target arrival time, were greater when food, blue light, or both were offered or presented in contrast to a control. Workers trained to forage for a combined food and light cue elevated their foraging intensity with experience. However, foraging intensity was not higher when using both cues simultaneously than in either one of the two alone. Following training, we split between the two cues and moved either the food or the blue light to the opposite maze corner. This manipulation impaired foraging success by either leading to fewer workers arriving at the target cell (when the light stayed and the food was moved) or to more workers arriving at the opposite target cell, empty of food (when the food stayed and the light was moved). This result indicates that ant workers use both senses when foraging for food and readily associate light with food.
{"title":"The combined role of visual and olfactory cues in foraging by <i>Cataglyphis</i> ants in laboratory mazes.","authors":"Tomer Gilad, Ori Bahar, Malak Hasan, Adi Bar, Aziz Subach, Inon Scharf","doi":"10.1093/cz/zoac058","DOIUrl":"https://doi.org/10.1093/cz/zoac058","url":null,"abstract":"<p><p>Foragers use several senses to locate food, and many animals rely on vision and smell. It is beneficial not to rely on a single sense, which might fail under certain conditions. We examined the contribution of vision and smell to foraging and maze exploration under laboratory conditions using <i>Cataglyphis</i> desert ants as a model. Foraging intensity, measured as the number of workers entering the maze and arriving at the target as well as target arrival time, were greater when food, blue light, or both were offered or presented in contrast to a control. Workers trained to forage for a combined food and light cue elevated their foraging intensity with experience. However, foraging intensity was not higher when using both cues simultaneously than in either one of the two alone. Following training, we split between the two cues and moved either the food or the blue light to the opposite maze corner. This manipulation impaired foraging success by either leading to fewer workers arriving at the target cell (when the light stayed and the food was moved) or to more workers arriving at the opposite target cell, empty of food (when the food stayed and the light was moved). This result indicates that ant workers use both senses when foraging for food and readily associate light with food.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e0/22/zoac058.PMC10443614.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10069815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peipei Hao, Kai Zhao, Xi Huang, Xiaodong Rao, Wei Liang, Yanyun Zhang
Bird songs are considered a sexually selected trait that can reflect the individual health of males as well as the vitality of potential mates and their competitors. Vocalization features should, therefore, be related to parasite load and body condition. Here, we performed a thorough acoustic analysis of the display calls of 9-month-old sub-adults and 18-month-old adults of pasture-raised red junglefowls Gallus gallus. We investigated whether the calls of pasture-raised red junglefowls can indicate body size and body condition, in addition to the influence of parasitic infection intensity on the expression of sexual traits. We found that frequency-related syllable parameters were significantly positively correlated with wing length in adults, whereas body weight was independent of both the frequency and temporal parameters of calls. In addition, we correlated parasitic load with the expression of sexually selected traits and discovered a positive association between the intensity of parasite infection and wing length in sub-adults, independent of vocal parameters. Overall, the results suggest that the vocalization of red junglefowls may convey reliable body size information, which will facilitate further studies of different vocal parameters in the transmission of bird vocalizations.
{"title":"The vocalization of the red junglefowl is a signal of body size and individual health.","authors":"Peipei Hao, Kai Zhao, Xi Huang, Xiaodong Rao, Wei Liang, Yanyun Zhang","doi":"10.1093/cz/zoac053","DOIUrl":"https://doi.org/10.1093/cz/zoac053","url":null,"abstract":"<p><p>Bird songs are considered a sexually selected trait that can reflect the individual health of males as well as the vitality of potential mates and their competitors. Vocalization features should, therefore, be related to parasite load and body condition. Here, we performed a thorough acoustic analysis of the display calls of 9-month-old sub-adults and 18-month-old adults of pasture-raised red junglefowls <i>Gallus gallus</i>. We investigated whether the calls of pasture-raised red junglefowls can indicate body size and body condition, in addition to the influence of parasitic infection intensity on the expression of sexual traits. We found that frequency-related syllable parameters were significantly positively correlated with wing length in adults, whereas body weight was independent of both the frequency and temporal parameters of calls. In addition, we correlated parasitic load with the expression of sexually selected traits and discovered a positive association between the intensity of parasite infection and wing length in sub-adults, independent of vocal parameters. Overall, the results suggest that the vocalization of red junglefowls may convey reliable body size information, which will facilitate further studies of different vocal parameters in the transmission of bird vocalizations.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/49/zoac053.PMC10443612.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10069816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ability to recognize and differentiate between conspecifics and heterospecifics as well as their signals is critical for the coexistence of closely related species. In the genus Rattus, species are morphologically similar and multiple species often coexist. Here, we investigated the interspecific recognition and signal differentiation of two sympatric rat species, the brown rat (Rattus norvegicus, RN) and the Asian house rat (Rattus tanezumi, RT). In a two-way choice test, both RN and RT females showed a preference for conspecific male rats to heterospecific ones. RT females showed a significant preference for accessible urine of males of same species to those of other species, but not for the inaccessible urine. On the other hand, there were significant differences in the structural characteristics of the ultrasonic vocalization emitted by males of these two rat species. Sodium dodecyl sulphate‒polyacrylamide gel electrophoresis (SDS‒PAGE) and isoelectric focusing electrophoresis unveiled that major urinary proteins (MUPs) in voided urine were more highly expressed in RN males versus RT males. The interspecific differences of urinary volatile compounds were also discussed. In conclusion, female rats had the ability to distinguish between males of either species.
{"title":"Species recognition and the divergences in the chemical and ultrasonic signals between two coexisting <i>Rattus</i> species.","authors":"Wei-Chao Wang, Zhi-Ming Li, Yi Chen, Jin-Hua Zhang, Jian-Xu Zhang, Yao-Hua Zhang","doi":"10.1093/cz/zoad035","DOIUrl":"10.1093/cz/zoad035","url":null,"abstract":"<p><p>The ability to recognize and differentiate between conspecifics and heterospecifics as well as their signals is critical for the coexistence of closely related species. In the genus <i>Rattus</i>, species are morphologically similar and multiple species often coexist. Here, we investigated the interspecific recognition and signal differentiation of two sympatric rat species, the brown rat (<i>Rattus norvegicus</i>, RN) and the Asian house rat (<i>Rattus tanezumi</i>, RT). In a two-way choice test, both RN and RT females showed a preference for conspecific male rats to heterospecific ones. RT females showed a significant preference for accessible urine of males of same species to those of other species, but not for the inaccessible urine. On the other hand, there were significant differences in the structural characteristics of the ultrasonic vocalization emitted by males of these two rat species. Sodium dodecyl sulphate‒polyacrylamide gel electrophoresis (SDS‒PAGE) and isoelectric focusing electrophoresis unveiled that major urinary proteins (MUPs) in voided urine were more highly expressed in RN males versus RT males. The interspecific differences of urinary volatile compounds were also discussed. In conclusion, female rats had the ability to distinguish between males of either species.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44598942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Morphological analyses are critical to quantify phenotypic variation, identify taxa, inform phylogenetic relationships, and shed light on evolutionary patterns. This work is particularly important in groups that display great morphological disparity. Such is the case in geomyoid rodents, a group that includes 2 of the most species-rich families of rodents in North America: the Geomyidae (pocket gophers) and the Heteromyidae (kangaroo rats, pocket mice, and their relatives). We assessed variation in skull morphology (including both shape and size) among geomyoids to test the hypothesis that there are statistically significant differences in skull measurements at the family, genus, and species levels. Our sample includes 886 specimens representing all geomyoid genera and 39 species. We used the geometric mean to compare size across taxa. We used 14 measurements of the cranium and lower jaw normalized for size to compare shape among and within taxa. Our results show that skull measurements enable the distinction of geomyoids at the family, genus, and species levels. There is a larger amount of size variation within Geomyidae than within Heteromyidae. Our phylomorphospace analysis shows that the skull shape of the common ancestor of all geomyoids was more similar to the common ancestor of heteromyids than that of geomyids. Geomyid skulls display negative allometry whereas heteromyid skulls display positive allometry. Within heteromyids, dipodomyines, and non-dipodomyines show significantly different allometric patterns. Future analyses including fossils will be necessary to test our evolutionary hypotheses.
{"title":"Multivariate analyses of skull morphology inform the taxonomy and evolution of geomyoid rodents.","authors":"Lily A Noftz, Jonathan J M Calede","doi":"10.1093/cz/zoac055","DOIUrl":"https://doi.org/10.1093/cz/zoac055","url":null,"abstract":"<p><p>Morphological analyses are critical to quantify phenotypic variation, identify taxa, inform phylogenetic relationships, and shed light on evolutionary patterns. This work is particularly important in groups that display great morphological disparity. Such is the case in geomyoid rodents, a group that includes 2 of the most species-rich families of rodents in North America: the Geomyidae (pocket gophers) and the Heteromyidae (kangaroo rats, pocket mice, and their relatives). We assessed variation in skull morphology (including both shape and size) among geomyoids to test the hypothesis that there are statistically significant differences in skull measurements at the family, genus, and species levels. Our sample includes 886 specimens representing all geomyoid genera and 39 species. We used the geometric mean to compare size across taxa. We used 14 measurements of the cranium and lower jaw normalized for size to compare shape among and within taxa. Our results show that skull measurements enable the distinction of geomyoids at the family, genus, and species levels. There is a larger amount of size variation within Geomyidae than within Heteromyidae. Our phylomorphospace analysis shows that the skull shape of the common ancestor of all geomyoids was more similar to the common ancestor of heteromyids than that of geomyids. Geomyid skulls display negative allometry whereas heteromyid skulls display positive allometry. Within heteromyids, dipodomyines, and non-dipodomyines show significantly different allometric patterns. Future analyses including fossils will be necessary to test our evolutionary hypotheses.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/90/43/zoac055.PMC10443661.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10069814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen-Qin Zhu, Shu-Mei Zi, Li-Fang Gao, Xiao-Dan Zhang, Fang-Yuan Liu, Qian Wang, Bo Du
Altricial birds often display biased preferences in providing parental care for their dependent offspring, especially during food shortages. During this process, such inflexible rules may result in provisioning errors. To demonstrate how parents optimize their provisioning strategies, we proposed a "diagnosis model" of parental care to posit that parents will undergo a diagnosis procedure to test whether selecting against some particular offspring based on phenotype is an optimal strategy. We tested this model in an asynchronous hatching bird, the Azure-winged Magpie Cyanopica cyanus, based on 10 years of data about demography and parental provisioning behaviors. Given their higher daily survival rates, core offspring (those hatched on the first day) merits an investment priority compared with their marginal brood mates (those hatched on later days). However, a marginal offspring also merited a priority if it displayed greater weight gain than the expected value at the early post-hatching days. Parents could detect such a marginal offspring via a diagnosis strategy, in which they provisioned the brood at the diagnosis stage by delivering food to every nestling that begged, then biased food toward high-value nestlings at the subsequent decision stage by making a negative response to the begging of low-value nestlings. In this provisioning strategy, the growth performance of a nestling became a more reliable indicator of its investment value than its hatching order or competitive ability. Our findings provide evidence for this "diagnosis model of parental care" wherein parents use a diagnosis method to optimize their provisioning strategy in brood reduction.
{"title":"A diagnosis model of parental care: How parents optimize their provisioning strategy in brood reduction?","authors":"Zhen-Qin Zhu, Shu-Mei Zi, Li-Fang Gao, Xiao-Dan Zhang, Fang-Yuan Liu, Qian Wang, Bo Du","doi":"10.1093/cz/zoac064","DOIUrl":"https://doi.org/10.1093/cz/zoac064","url":null,"abstract":"<p><p>Altricial birds often display biased preferences in providing parental care for their dependent offspring, especially during food shortages. During this process, such inflexible rules may result in provisioning errors. To demonstrate how parents optimize their provisioning strategies, we proposed a \"diagnosis model\" of parental care to posit that parents will undergo a diagnosis procedure to test whether selecting against some particular offspring based on phenotype is an optimal strategy. We tested this model in an asynchronous hatching bird, the Azure-winged Magpie <i>Cyanopica cyanus</i>, based on 10 years of data about demography and parental provisioning behaviors. Given their higher daily survival rates, core offspring (those hatched on the first day) merits an investment priority compared with their marginal brood mates (those hatched on later days). However, a marginal offspring also merited a priority if it displayed greater weight gain than the expected value at the early post-hatching days. Parents could detect such a marginal offspring via a diagnosis strategy, in which they provisioned the brood at the diagnosis stage by delivering food to every nestling that begged, then biased food toward high-value nestlings at the subsequent decision stage by making a negative response to the begging of low-value nestlings. In this provisioning strategy, the growth performance of a nestling became a more reliable indicator of its investment value than its hatching order or competitive ability. Our findings provide evidence for this \"diagnosis model of parental care\" wherein parents use a diagnosis method to optimize their provisioning strategy in brood reduction.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/d0/zoac064.PMC10443608.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10122700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clonal organisms are particularly useful to investigate the contribution of epigenetics to phenotypic plasticity, because confounding effects of genetic variation are negligible. In the last decade, the apomictic parthenogenetic marbled crayfish, Procambarus virginalis, has been developed as a model to investigate the relationships between phenotypic plasticity and genetic and epigenetic diversity in detail. This crayfish originated about 30 years ago by autotriploidy from a single slough crayfish Procambarus fallax. As the result of human releases and active spreading, marbled crayfish has established numerous populations in very diverse habitats in 22 countries from the tropics to cold temperate regions. Studies in the laboratory and field revealed considerable plasticity in coloration, spination, morphometric parameters, growth, food preference, population structure, trophic position, and niche width. Illumina and PacBio whole-genome sequencing of marbled crayfish from representatives of 19 populations in Europe and Madagascar demonstrated extremely low genetic diversity within and among populations, indicating that the observed phenotypic diversity and ability to live in strikingly different environments are not due to adaptation by selection on genetic variation. In contrast, considerable differences were found between populations in the DNA methylation patterns of hundreds of genes, suggesting that the environmentally induced phenotypic plasticity is mediated by epigenetic mechanisms and corresponding changes in gene expression. Specific DNA methylation fingerprints persisted in local populations over successive years indicating the existence of epigenetic ecotypes, but there is presently no information as to whether these epigenetic signatures are transgenerationally inherited or established anew in each generation and whether the recorded phenotypic plasticity is adaptive or nonadaptive.
{"title":"Phenotypic plasticity in the monoclonal marbled crayfish is associated with very low genetic diversity but pronounced epigenetic diversity.","authors":"Günter Vogt","doi":"10.1093/cz/zoac094","DOIUrl":"https://doi.org/10.1093/cz/zoac094","url":null,"abstract":"<p><p>Clonal organisms are particularly useful to investigate the contribution of epigenetics to phenotypic plasticity, because confounding effects of genetic variation are negligible. In the last decade, the apomictic parthenogenetic marbled crayfish, <i>Procambarus virginalis</i>, has been developed as a model to investigate the relationships between phenotypic plasticity and genetic and epigenetic diversity in detail. This crayfish originated about 30 years ago by autotriploidy from a single slough crayfish <i>Procambarus fallax</i>. As the result of human releases and active spreading, marbled crayfish has established numerous populations in very diverse habitats in 22 countries from the tropics to cold temperate regions. Studies in the laboratory and field revealed considerable plasticity in coloration, spination, morphometric parameters, growth, food preference, population structure, trophic position, and niche width. Illumina and PacBio whole-genome sequencing of marbled crayfish from representatives of 19 populations in Europe and Madagascar demonstrated extremely low genetic diversity within and among populations, indicating that the observed phenotypic diversity and ability to live in strikingly different environments are not due to adaptation by selection on genetic variation. In contrast, considerable differences were found between populations in the DNA methylation patterns of hundreds of genes, suggesting that the environmentally induced phenotypic plasticity is mediated by epigenetic mechanisms and corresponding changes in gene expression. Specific DNA methylation fingerprints persisted in local populations over successive years indicating the existence of epigenetic ecotypes, but there is presently no information as to whether these epigenetic signatures are transgenerationally inherited or established anew in each generation and whether the recorded phenotypic plasticity is adaptive or nonadaptive.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d0/a2/zoac094.PMC10443617.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10421770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Martín, Jesús Ortega, Roberto García-Roa, Gonzalo Rodríguez-Ruiz, Ana Pérez-Cembranos, Valentín Pérez-Mellado
Arid climates are characterized by a summer drought period to which animals seem adapted. However, in some years, the drought can extend for unusually longer periods. Examining the effects of these current extreme weather events on biodiversity can help to understand the effects of climate change, as models predict an increase in drought severity. Here, we examined the effects of "unusual" extended drought on soil invertebrate prey availability and on diet composition (based on fecal contents) and diet selection of a fossorial amphisbaenian, the checkerboard worm lizard Trogonophis wiegmanni. Weather data show interannual variations in summer drought duration. The abundance and diversity of soil invertebrates in spring were high, and similar to those found in a "normal" early autumn, after some rain had ended with the summer drought. In contrast, in years with "unusual" extended drought, abundance, and diversity of soil invertebrates in early autumn were very low. Also, there were seasonal changes in amphisbaenians' diet; in autumn with drought, prey diversity, and niche breadth decreased with respect to spring and autumns after some rain had fallen. Amphisbaenians did not eat prey at random in any season, but made some changes in prey selection that may result from drought-related restrictions in prey availability. Finally, in spite that amphisbaenians showed some feeding flexibility, their body condition was lower in autumn than in spring, and much lower in autumn with drought. If extended drought became the norm in the future, amphisbaenians might suffer important negative effects for their health state.
{"title":"Coping with drought? Effects of extended drought conditions on soil invertebrate prey and diet selection by a fossorial amphisbaenian reptile.","authors":"José Martín, Jesús Ortega, Roberto García-Roa, Gonzalo Rodríguez-Ruiz, Ana Pérez-Cembranos, Valentín Pérez-Mellado","doi":"10.1093/cz/zoac056","DOIUrl":"https://doi.org/10.1093/cz/zoac056","url":null,"abstract":"<p><p>Arid climates are characterized by a summer drought period to which animals seem adapted. However, in some years, the drought can extend for unusually longer periods. Examining the effects of these current extreme weather events on biodiversity can help to understand the effects of climate change, as models predict an increase in drought severity. Here, we examined the effects of \"unusual\" extended drought on soil invertebrate prey availability and on diet composition (based on fecal contents) and diet selection of a fossorial amphisbaenian, the checkerboard worm lizard <i>Trogonophis wiegmanni</i>. Weather data show interannual variations in summer drought duration. The abundance and diversity of soil invertebrates in spring were high, and similar to those found in a \"normal\" early autumn, after some rain had ended with the summer drought. In contrast, in years with \"unusual\" extended drought, abundance, and diversity of soil invertebrates in early autumn were very low. Also, there were seasonal changes in amphisbaenians' diet; in autumn with drought, prey diversity, and niche breadth decreased with respect to spring and autumns after some rain had fallen. Amphisbaenians did not eat prey at random in any season, but made some changes in prey selection that may result from drought-related restrictions in prey availability. Finally, in spite that amphisbaenians showed some feeding flexibility, their body condition was lower in autumn than in spring, and much lower in autumn with drought. If extended drought became the norm in the future, amphisbaenians might suffer important negative effects for their health state.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/da/zoac056.PMC10443610.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10122698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hajriz Berisha, Gergely Horváth, Žiga Fišer, Gergely Balázs, Cene Fišer, Gábor Herczeg
Populations experiencing negligible predation pressure are expected to evolve higher behavioral activity. However, when sexes have different expected benefits from high activity, the adaptive shift is expected to be sex-specific. Here, we compared movement activity of one cave (lack of predation) and three adjacent surface (high and diverse predation) populations of Asellus aquaticus, a freshwater isopod known for its independent colonization of several caves across Europe. We predicted 1) higher activity in cave than in surface populations, with 2) the difference being more pronounced in males as they are known for active mate searching behavior, while females are not. Activity was assessed both in the presence and absence of light. Our results supported both predictions: movement activity was higher in the cave than in the surface populations, particularly in males. Relaxed predation pressure in the cave-adapted population is most likely the main selective factor behind increased behavioral activity, but we also showed that the extent of increase is sex-specific.
{"title":"Sex-dependent increase of movement activity in the freshwater isopod <i>Asellus aquaticus</i> following adaptation to a predator-free cave habitat.","authors":"Hajriz Berisha, Gergely Horváth, Žiga Fišer, Gergely Balázs, Cene Fišer, Gábor Herczeg","doi":"10.1093/cz/zoac063","DOIUrl":"https://doi.org/10.1093/cz/zoac063","url":null,"abstract":"<p><p>Populations experiencing negligible predation pressure are expected to evolve higher behavioral activity. However, when sexes have different expected benefits from high activity, the adaptive shift is expected to be sex-specific. Here, we compared movement activity of one cave (lack of predation) and three adjacent surface (high and diverse predation) populations of <i>Asellus aquaticus</i>, a freshwater isopod known for its independent colonization of several caves across Europe. We predicted 1) higher activity in cave than in surface populations, with 2) the difference being more pronounced in males as they are known for active mate searching behavior, while females are not. Activity was assessed both in the presence and absence of light. Our results supported both predictions: movement activity was higher in the cave than in the surface populations, particularly in males. Relaxed predation pressure in the cave-adapted population is most likely the main selective factor behind increased behavioral activity, but we also showed that the extent of increase is sex-specific.</p>","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2f/d7/zoac063.PMC10443615.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10067502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Recent phylogenetic studies amended the taxonomy of three-toed jerboas (subfamily Dipodinae), including raising subspecies to full species. Here, we use geometric morphometrics to compare scaled-shape differences in dipodine crania while considering their revised taxonomy. We sampled Dipus deasyi, D. sagitta halli, D. s. sowerbyi, Jaculus blanfordi blanfordi, J. hirtipes, J. jaculus, J. loftusi, J. orientalis gerboa, J. o. mauritanicus, and Stylodipus andrewsi. Crania were not sexually dimorphic. Common allometry explained some of the shape variation, for example, reduced braincases in larger specimens. Most operational taxonomic unit pairs differed in both size and shape. Dipus and Stylodipus clustered together based on their cranial shape. Jaculus differed from the aforementioned genera by its larger tympanic bulla, broader braincase, larger infraorbital foramen, along with reduced molars and rostra. Jaculus orientalis differed from other Jaculus by its broader face versus reduced cranial vault. Jaculus blanfordi (subgenus Haltomys) resembles members of the subgenus Jaculus more than its consubgener (J. orientalis). Jaculus loftusi, previously considered a synonym of J. jaculus, clearly differed from the latter by its shorter rostrum, smaller infraorbital foramen, and more caudolaterally expanded tympanic bulla. Jaculus hirtipes, another recent synonym of J. jaculus, resembled J. blanfordi more in scaled cranial shape than it did J. jaculus. Dipus sagitta halli and D. s. sowerbyi were indistinguishable, but they clearly differed from D. deasyi (recently raised to full species) with the latter having a larger molar row, more inflated tympanic bulla, and shorter, slenderer rostrum. Ecological explanations for detected cranial shape differences are considered, including diet and habitat (particularly substrate).
{"title":"Cranial differences in three-toed jerboas (Dipodinae, Dipodidae, Rodentia) according to recent taxonomic revisions.","authors":"Bader H Alhajeri, Zahraa Hasan, Hasan Alhaddad","doi":"10.1093/cz/zoac057","DOIUrl":"https://doi.org/10.1093/cz/zoac057","url":null,"abstract":"Abstract Recent phylogenetic studies amended the taxonomy of three-toed jerboas (subfamily Dipodinae), including raising subspecies to full species. Here, we use geometric morphometrics to compare scaled-shape differences in dipodine crania while considering their revised taxonomy. We sampled Dipus deasyi, D. sagitta halli, D. s. sowerbyi, Jaculus blanfordi blanfordi, J. hirtipes, J. jaculus, J. loftusi, J. orientalis gerboa, J. o. mauritanicus, and Stylodipus andrewsi. Crania were not sexually dimorphic. Common allometry explained some of the shape variation, for example, reduced braincases in larger specimens. Most operational taxonomic unit pairs differed in both size and shape. Dipus and Stylodipus clustered together based on their cranial shape. Jaculus differed from the aforementioned genera by its larger tympanic bulla, broader braincase, larger infraorbital foramen, along with reduced molars and rostra. Jaculus orientalis differed from other Jaculus by its broader face versus reduced cranial vault. Jaculus blanfordi (subgenus Haltomys) resembles members of the subgenus Jaculus more than its consubgener (J. orientalis). Jaculus loftusi, previously considered a synonym of J. jaculus, clearly differed from the latter by its shorter rostrum, smaller infraorbital foramen, and more caudolaterally expanded tympanic bulla. Jaculus hirtipes, another recent synonym of J. jaculus, resembled J. blanfordi more in scaled cranial shape than it did J. jaculus. Dipus sagitta halli and D. s. sowerbyi were indistinguishable, but they clearly differed from D. deasyi (recently raised to full species) with the latter having a larger molar row, more inflated tympanic bulla, and shorter, slenderer rostrum. Ecological explanations for detected cranial shape differences are considered, including diet and habitat (particularly substrate).","PeriodicalId":50599,"journal":{"name":"Current Zoology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/a4/zoac057.PMC10443611.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10067964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}