Exposure to multiple environmental stressors is a common occurrence that can affect organisms in predictable or unpredictable ways. Hypoxia and turbidity in aquatic environments are 2 stressors that can affect reproductive behaviors by altering energy availability and the visual environment, respectively. Here we examine the relative effects of population and the rearing environment (oxygen concentration and turbidity) on reproductive behaviors. We reared cichlid fish (the Egyptian mouthbrooder, Pseudocrenilabrus multicolor) from 2 populations (a swamp and river) until sexual maturity, in a full factorial design (hypoxic/normoxic × clear/turbid) and then quantified male competitive and courtship behaviors and female preference under their respective rearing conditions. Overall, we found that the rearing environment was more important than population for determining behavior, indicating there were few heritable differences in reproductive behavior between the 2 populations. Unexpectedly, males in the hypoxic rearing treatment performed more competitive and courtship behaviors. Under turbid conditions, males performed fewer competitive and courtship behaviors. We predicted that females would prefer males from their own population. However, under the hypoxic and turbid combination females from both populations preferred males from the other population. Our results suggest that reproductive behaviors are affected by interactions among male traits, female preferences, and environmental conditions.
Locomotion is thermally sensitive in ectotherms and therefore it is typically expressed differently among thermally heterogenous environments. Locomotion is a complex function, and whereas physiological and behavioral traits that influence locomotor performance may respond to thermal variation throughout life, other contributing traits, like body shape, may have more restricted responses. How morphology affects locomotor performance under variable temperature conditions is unknown. Here, we investigated 3 genetically distinct strains of zebrafish, Danio rerio (AB, WIK, and Tu) with a shared multi-generational history at 28 °C. After rearing fish at 28 °C, we measured prolonged swimming speed (U crit) at each of 6 temperatures (between 16 °C and 34 °C). Speed was strongly positively correlated among temperatures, resulting in most among individual variation being temperature-independent (i.e., fish were relatively fast or slow across all temperatures). However, we also detected significant variation along 2 axes reflecting temperature-dependent variation. Although strains differed in mean swimming performance, within strain (among-individual) patterns of speed variation were markedly consistent. Body shape and size explained significant variation among individuals in both temperature-independent and temperature-dependent axes of swimming speed variation. Notably, morphological traits that were most strongly associated with temperature-independent performance variation (i.e., faster-slower) differed from those associated with temperature-dependent (i.e., hotter-colder) variation. Further, there were significant differences among strains in both the direction and strength of association for specific morphological traits. Our results suggest that thermally heterogenous environments could have complex effects on the evolution of traits that contribute to whole organism performance traits.

