首页 > 最新文献

Journal of Agricultural, Biological and Environmental Statistics最新文献

英文 中文
Rejoinder on ‘Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks’ 关于 "标记空间点过程:线性网络上点过程的现状与扩展
Pub Date : 2024-03-26 DOI: 10.1007/s13253-024-00613-1
Matthias Eckardt, Mehdi Moradi
{"title":"Rejoinder on ‘Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks’","authors":"Matthias Eckardt, Mehdi Moradi","doi":"10.1007/s13253-024-00613-1","DOIUrl":"https://doi.org/10.1007/s13253-024-00613-1","url":null,"abstract":"","PeriodicalId":506444,"journal":{"name":"Journal of Agricultural, Biological and Environmental Statistics","volume":"105 51","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140380671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference for New Environmental Contours Using Extreme Value Analysis 利用极值分析推断新的环境轮廓线
Pub Date : 2024-03-18 DOI: 10.1007/s13253-024-00612-2
Emma S. Simpson, J. Tawn
{"title":"Inference for New Environmental Contours Using Extreme Value Analysis","authors":"Emma S. Simpson, J. Tawn","doi":"10.1007/s13253-024-00612-2","DOIUrl":"https://doi.org/10.1007/s13253-024-00612-2","url":null,"abstract":"","PeriodicalId":506444,"journal":{"name":"Journal of Agricultural, Biological and Environmental Statistics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140234793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multi-omics Integrative Analysis for Incomplete Data Using Weighted p-Value Adjustment Approaches 利用加权 p 值调整方法对不完整数据进行多组学综合分析
Pub Date : 2024-02-28 DOI: 10.1007/s13253-024-00603-3
Wenda Zhang, Zichen Ma, Yen-Yi Ho, Shuyi Yang, Joshua Habiger, Hsin-Hsiung Huang, Yufei Huang
{"title":"Multi-omics Integrative Analysis for Incomplete Data Using Weighted p-Value Adjustment Approaches","authors":"Wenda Zhang, Zichen Ma, Yen-Yi Ho, Shuyi Yang, Joshua Habiger, Hsin-Hsiung Huang, Yufei Huang","doi":"10.1007/s13253-024-00603-3","DOIUrl":"https://doi.org/10.1007/s13253-024-00603-3","url":null,"abstract":"","PeriodicalId":506444,"journal":{"name":"Journal of Agricultural, Biological and Environmental Statistics","volume":"14 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140419874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint Spatial Modeling Bridges the Gap Between Disparate Disease Surveillance and Population Monitoring Efforts Informing Conservation of At-risk Bat Species 联合空间建模弥合了不同疾病监测和种群监测工作之间的差距,为保护高危蝙蝠物种提供信息
Pub Date : 2024-02-24 DOI: 10.1007/s13253-023-00593-8
Christian Stratton, K. Irvine, Katharine M. Banner, E. Almberg, Dan Bachen, Kristina Smucker
{"title":"Joint Spatial Modeling Bridges the Gap Between Disparate Disease Surveillance and Population Monitoring Efforts Informing Conservation of At-risk Bat Species","authors":"Christian Stratton, K. Irvine, Katharine M. Banner, E. Almberg, Dan Bachen, Kristina Smucker","doi":"10.1007/s13253-023-00593-8","DOIUrl":"https://doi.org/10.1007/s13253-023-00593-8","url":null,"abstract":"","PeriodicalId":506444,"journal":{"name":"Journal of Agricultural, Biological and Environmental Statistics","volume":"41 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140435212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Individual-Based Spatial Epidemiological Model for the Spread of Plant Diseases 基于个体的植物病害传播空间流行病学模型
Pub Date : 2024-02-23 DOI: 10.1007/s13253-024-00604-2
M. Cendoya, Ana Navarro-Quiles, A. López-Quílez, Antonio Vicent, David Conesa
{"title":"An Individual-Based Spatial Epidemiological Model for the Spread of Plant Diseases","authors":"M. Cendoya, Ana Navarro-Quiles, A. López-Quílez, Antonio Vicent, David Conesa","doi":"10.1007/s13253-024-00604-2","DOIUrl":"https://doi.org/10.1007/s13253-024-00604-2","url":null,"abstract":"","PeriodicalId":506444,"journal":{"name":"Journal of Agricultural, Biological and Environmental Statistics","volume":"27 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140435301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial Wildfire Risk Modeling Using a Tree-Based Multivariate Generalized Pareto Mixture Model 利用基于树木的多变量广义帕累托混合模型建立空间野火风险模型
Pub Date : 2024-02-21 DOI: 10.1007/s13253-023-00596-5
Daniela Cisneros, A. Hazra, Raphael Huser
{"title":"Spatial Wildfire Risk Modeling Using a Tree-Based Multivariate Generalized Pareto Mixture Model","authors":"Daniela Cisneros, A. Hazra, Raphael Huser","doi":"10.1007/s13253-023-00596-5","DOIUrl":"https://doi.org/10.1007/s13253-023-00596-5","url":null,"abstract":"","PeriodicalId":506444,"journal":{"name":"Journal of Agricultural, Biological and Environmental Statistics","volume":"229 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140443727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Order Restricted Randomized Block Designs 限序随机区组设计
Pub Date : 2023-12-19 DOI: 10.1007/s13253-023-00590-x
Omer Ozturk, Richard Jarrett, Olena Kravchuk
{"title":"Order Restricted Randomized Block Designs","authors":"Omer Ozturk, Richard Jarrett, Olena Kravchuk","doi":"10.1007/s13253-023-00590-x","DOIUrl":"https://doi.org/10.1007/s13253-023-00590-x","url":null,"abstract":"","PeriodicalId":506444,"journal":{"name":"Journal of Agricultural, Biological and Environmental Statistics","volume":"286 1","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139171826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of “Numerical Methods in Environmental Data Analysis” by Moses Eterigho Emetere Moses Eterigho Emetere 所著《环境数据分析中的数值方法》评论
Pub Date : 2023-11-23 DOI: 10.1007/s13253-023-00587-6
Mudarris Mudarris, Desy Permatasari
{"title":"Review of “Numerical Methods in Environmental Data Analysis” by Moses Eterigho Emetere","authors":"Mudarris Mudarris, Desy Permatasari","doi":"10.1007/s13253-023-00587-6","DOIUrl":"https://doi.org/10.1007/s13253-023-00587-6","url":null,"abstract":"","PeriodicalId":506444,"journal":{"name":"Journal of Agricultural, Biological and Environmental Statistics","volume":"1 1","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139243649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Neural Network Identification of Limnonectes Species and New Class Detection Using Image Data 利用图像数据的深度神经网络识别林孔虫物种和新类别检测
Pub Date : 2023-11-15 DOI: 10.48550/arXiv.2311.08661
Li Xu, Yili Hong, Eric P. Smith, David S. McLeod, Xinwei Deng, Laura J. Freeman
As is true of many complex tasks, the work of discovering, describing, and understanding the diversity of life on Earth (viz., biological systematics and taxonomy) requires many tools. Some of this work can be accomplished as it has been done in the past, but some aspects present us with challenges which traditional knowledge and tools cannot adequately resolve. One such challenge is presented by species complexes in which the morphological similarities among the group members make it difficult to reliably identify known species and detect new ones. We address this challenge by developing new tools using the principles of machine learning to resolve two specific questions related to species complexes. The first question is formulated as a classification problem in statistics and machine learning and the second question is an out-of-distribution (OOD) detection problem. We apply these tools to a species complex comprising Southeast Asian stream frogs ( Limnonectes kuhlii complex) and employ a morphological character (hind limb skin texture) traditionally treated qualitatively in a quantitative and objective manner. We demonstrate that deep neural networks can successfully automate the classification of an image into a known species group for which it has been trained. We further demonstrate that the algorithm can successfully classify an image into a new class if the image does not belong to the existing classes. Additionally, we use the larger MNIST dataset to test the performance of our OOD detection algorithm. We finish our paper with some concluding remarks regarding the application of these methods to species complexes and our efforts to document true biodiversity.
正如许多复杂的任务一样,发现、描述和理解地球上生命多样性的工作(即生物系统学和分类学)需要许多工具。其中有些工作可以按照过去的方法完成,但有些方面则面临着传统知识和工具无法充分解决的挑战。其中一个挑战是物种复合体,由于群体成员形态上的相似性,很难可靠地识别已知物种和发现新物种。为了应对这一挑战,我们利用机器学习原理开发了新工具,以解决与物种复合体有关的两个具体问题。第一个问题是统计学和机器学习中的分类问题,第二个问题是分布外(OOD)检测问题。我们将这些工具应用于由东南亚溪蛙(Limnonectes kuhlii complex)组成的物种群,并采用一种传统上定性处理的形态特征(后肢皮肤纹理),以一种定量和客观的方式进行处理。我们证明,深度神经网络可以成功地将图像自动分类到已知的物种组中,并为此进行了训练。我们进一步证明,如果图像不属于现有类别,该算法也能成功地将图像归入新类别。此外,我们还使用了更大的 MNIST 数据集来测试我们的 OOD 检测算法的性能。最后,我们对这些方法在物种群中的应用以及我们为记录真正的生物多样性所做的努力做了总结。
{"title":"Deep Neural Network Identification of Limnonectes Species and New Class Detection Using Image Data","authors":"Li Xu, Yili Hong, Eric P. Smith, David S. McLeod, Xinwei Deng, Laura J. Freeman","doi":"10.48550/arXiv.2311.08661","DOIUrl":"https://doi.org/10.48550/arXiv.2311.08661","url":null,"abstract":"As is true of many complex tasks, the work of discovering, describing, and understanding the diversity of life on Earth (viz., biological systematics and taxonomy) requires many tools. Some of this work can be accomplished as it has been done in the past, but some aspects present us with challenges which traditional knowledge and tools cannot adequately resolve. One such challenge is presented by species complexes in which the morphological similarities among the group members make it difficult to reliably identify known species and detect new ones. We address this challenge by developing new tools using the principles of machine learning to resolve two specific questions related to species complexes. The first question is formulated as a classification problem in statistics and machine learning and the second question is an out-of-distribution (OOD) detection problem. We apply these tools to a species complex comprising Southeast Asian stream frogs ( Limnonectes kuhlii complex) and employ a morphological character (hind limb skin texture) traditionally treated qualitatively in a quantitative and objective manner. We demonstrate that deep neural networks can successfully automate the classification of an image into a known species group for which it has been trained. We further demonstrate that the algorithm can successfully classify an image into a new class if the image does not belong to the existing classes. Additionally, we use the larger MNIST dataset to test the performance of our OOD detection algorithm. We finish our paper with some concluding remarks regarding the application of these methods to species complexes and our efforts to document true biodiversity.","PeriodicalId":506444,"journal":{"name":"Journal of Agricultural, Biological and Environmental Statistics","volume":"26 3","pages":"1-21"},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139273638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Agricultural, Biological and Environmental Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1