Lingxiang Li, Wenrong Chen, Zhi Chen, Tianyu Hu, Weidong Mei, B. Ning
Terahertz (THz) band has attracted increasingly attention from the academic and industry for communications, as it enables gigabit-level data rates for 6G. However, as compared to sub-6GHz signals, THz signals suffer from more severe coverage issue due to more significant propagation loss and vulnerability to line-of-sight (LoS) blockage, which hinders the applications of THz communications. In this article, we propose an integrated sensing and communications (ISAC) assisted beam management technology to tackle this issue. First, we review the evolution of beamforming technologies from microwave frequencies to millimeter-wave (mmWave) and THz frequencies. Then, several promising enabling technologies for ISAC-assisted beamforming are discussed, including radio-frequency (RF) environment mapping and beam management based on environment perception, as well as resource allocation for sensing and communications. Numerical results show that, the proposed ISAC-assisted beam management scheme can significantly reduce the beam misalignment probability by approximately 70 percent and achieve coverage enhancement by 36.4 percent on average, as compared to the traditional one without sensing.
{"title":"Enhancing Terahertz Communications Coverage with ISAC-Assisted Beam Management","authors":"Lingxiang Li, Wenrong Chen, Zhi Chen, Tianyu Hu, Weidong Mei, B. Ning","doi":"10.1109/MWC.002.2300291","DOIUrl":"https://doi.org/10.1109/MWC.002.2300291","url":null,"abstract":"Terahertz (THz) band has attracted increasingly attention from the academic and industry for communications, as it enables gigabit-level data rates for 6G. However, as compared to sub-6GHz signals, THz signals suffer from more severe coverage issue due to more significant propagation loss and vulnerability to line-of-sight (LoS) blockage, which hinders the applications of THz communications. In this article, we propose an integrated sensing and communications (ISAC) assisted beam management technology to tackle this issue. First, we review the evolution of beamforming technologies from microwave frequencies to millimeter-wave (mmWave) and THz frequencies. Then, several promising enabling technologies for ISAC-assisted beamforming are discussed, including radio-frequency (RF) environment mapping and beam management based on environment perception, as well as resource allocation for sensing and communications. Numerical results show that, the proposed ISAC-assisted beam management scheme can significantly reduce the beam misalignment probability by approximately 70 percent and achieve coverage enhancement by 36.4 percent on average, as compared to the traditional one without sensing.","PeriodicalId":506510,"journal":{"name":"IEEE Wireless Communications","volume":"12 5","pages":"34-40"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139826921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Molisch, Jorge Gómez-Ponce, Naveed A. Abbasi, Wonsuk Choi, Gary Xu, Charlie Zhang
Sub-THz communication systems are anticipated to play a major part in 6G. To develop those systems further, it is important to both analyze the possible coverage, and investigate the propagation channel properties that impact the design of equalizers, guard intervals, and other measures for combatting dispersion. This article describes the key effects based on extensive measurements with both a channel sounder and a real-time testbed. Transmission over more than 120m with data rates in excess of 2.3 Gb/s is demonstrated with the testbed. Then the requirements for equalization are discussed, and explanations provided for the seeming difference of recent results by different groups; it is shown that equalization requirements strongly depend on the modulation and coding scheme used in the system.
{"title":"Properties of Sub-THz Propagation Channels and Their Impact on System Behavior: Channel Measurements and Transmission Experiments","authors":"A. Molisch, Jorge Gómez-Ponce, Naveed A. Abbasi, Wonsuk Choi, Gary Xu, Charlie Zhang","doi":"10.1109/MWC.001.2300329","DOIUrl":"https://doi.org/10.1109/MWC.001.2300329","url":null,"abstract":"Sub-THz communication systems are anticipated to play a major part in 6G. To develop those systems further, it is important to both analyze the possible coverage, and investigate the propagation channel properties that impact the design of equalizers, guard intervals, and other measures for combatting dispersion. This article describes the key effects based on extensive measurements with both a channel sounder and a real-time testbed. Transmission over more than 120m with data rates in excess of 2.3 Gb/s is demonstrated with the testbed. Then the requirements for equalization are discussed, and explanations provided for the seeming difference of recent results by different groups; it is shown that equalization requirements strongly depend on the modulation and coding scheme used in the system.","PeriodicalId":506510,"journal":{"name":"IEEE Wireless Communications","volume":"66 1","pages":"18-24"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139888136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}