首页 > 最新文献

Combinatorica最新文献

英文 中文
Packing edge disjoint cliques in graphs 图中的填充边不相交团
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-10-10 DOI: 10.1007/s00493-025-00184-w
József Balogh, Michael C. Wigal
Let <inline-formula><alternatives><mml:math><mml:mrow><mml:mi>r</mml:mi><mml:mo>≥</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$r ge 3$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_184_Article_IEq1.gif"></inline-graphic></alternatives></inline-formula> be fixed and <italic>G</italic> be an <italic>n</italic>-vertex graph. A long-standing conjecture of Győri states that if <inline-formula><alternatives><mml:math><mml:mrow><mml:mi>e</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msub><mml:mi>t</mml:mi><mml:mrow><mml:mi>r</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>+</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$e(G) = t_{r-1}(n) + k$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_184_Article_IEq2.gif"></inline-graphic></alternatives></inline-formula>, where <inline-formula><alternatives><mml:math><mml:mrow><mml:msub><mml:mi>t</mml:mi><mml:mrow><mml:mi>r</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$t_{r-1}(n)$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_184_Article_IEq3.gif"></inline-graphic></alternatives></inline-formula> denotes the number of edges of the Turán graph on <italic>n</italic> vertices and <inline-formula><alternatives><mml:math><mml:mrow><mml:mi>r</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$r - 1$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_184_Article_IEq4.gif"></inline-graphic></alternatives></inline-formula> parts, then <italic>G</italic> has at least <inline-formula><alternatives><mml:math><mml:mrow><mml:mo stretchy="
Let r≥3documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$r ge 3$$end{document} be fixed and G be an n-vertex graph. A long-standing conjecture of Győri states that if e(G)=tr-1(n)+kdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$e(G) = t_{r-1}(n) + k$$end{document}, where tr-1(n)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$t_{r-1}(n)$$end{document} denotes the number of edges of the Turán graph on n vertices and r-1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$r - 1$$end{document} parts, then G has at least (2-o(1))k/rdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$(2 - o(1))k/r$$end{document} edge disjoint r-cliques. We prove this conjecture.
{"title":"Packing edge disjoint cliques in graphs","authors":"József Balogh, Michael C. Wigal","doi":"10.1007/s00493-025-00184-w","DOIUrl":"https://doi.org/10.1007/s00493-025-00184-w","url":null,"abstract":"Let &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;r&lt;/mml:mi&gt;&lt;mml:mo&gt;≥&lt;/mml:mo&gt;&lt;mml:mn&gt;3&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$r ge 3$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_184_Article_IEq1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt; be fixed and &lt;italic&gt;G&lt;/italic&gt; be an &lt;italic&gt;n&lt;/italic&gt;-vertex graph. A long-standing conjecture of Győri states that if &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;e&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mi&gt;G&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mo&gt;=&lt;/mml:mo&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;t&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;r&lt;/mml:mi&gt;&lt;mml:mo&gt;-&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mi&gt;n&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;mml:mi&gt;k&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$e(G) = t_{r-1}(n) + k$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_184_Article_IEq2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt;, where &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;t&lt;/mml:mi&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;r&lt;/mml:mi&gt;&lt;mml:mo&gt;-&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:msub&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mi&gt;n&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$t_{r-1}(n)$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_184_Article_IEq3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt; denotes the number of edges of the Turán graph on &lt;italic&gt;n&lt;/italic&gt; vertices and &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;r&lt;/mml:mi&gt;&lt;mml:mo&gt;-&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$r - 1$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_184_Article_IEq4.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt; parts, then &lt;italic&gt;G&lt;/italic&gt; has at least &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"2 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triangles and Vitali Sets 三角形和维塔利集合
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-10-10 DOI: 10.1007/s00493-025-00182-y
Jindřich Zapletal
It is consistent relative to an inaccessible cardinal that ZF+DC holds, the hypergraph of equilateral triangles in Euclidean plane has countable chromatic number, while there is no Vitali set.
相对于不可达基数ZF+DC是一致的,欧几里得平面上的等边三角形超图具有可数的色数,而不存在维塔利集。
{"title":"Triangles and Vitali Sets","authors":"Jindřich Zapletal","doi":"10.1007/s00493-025-00182-y","DOIUrl":"https://doi.org/10.1007/s00493-025-00182-y","url":null,"abstract":"It is consistent relative to an inaccessible cardinal that ZF+DC holds, the hypergraph of equilateral triangles in Euclidean plane has countable chromatic number, while there is no Vitali set.","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"77 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Average plane-size in complex-representable matroids 复杂可表示拟阵中的平均平面尺寸
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-10-10 DOI: 10.1007/s00493-025-00181-z
Rutger Campbell, Jim Geelen, Matthew E. Kroeker
Melchior’s inequality implies that the average line-length in a simple, rank-3, real-representable matroid is less than 3. A similar result holds for complex-representable matroids, using Hirzebruch’s inequality, but with a weaker bound of 4. We show that the average plane-size in a simple, rank-4, complex-representable matroid is bounded above by an absolute constant, unless the matroid is the direct-sum of two lines. We also prove that, for any integer k, in complex-representable matroids with rank at least 2k-1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$2k-1$$end{document}, the average size of a rank-k flat is bounded above by a constant depending only on k. Finally, we prove that, for any integer r2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$rgeqslant 2$$end{document}, the average flat-size in rank-r complex-representable matroids is bounded above by a constant depending only on r. We obtain our results using a theorem, due to Ben Lund, that gives a good estimate on the number of rank-k flats in a complex-representable matroid.
Melchior’s inequality implies that the average line-length in a simple, rank-3, real-representable matroid is less than 3. A similar result holds for complex-representable matroids, using Hirzebruch’s inequality, but with a weaker bound of 4. We show that the average plane-size in a simple, rank-4, complex-representable matroid is bounded above by an absolute constant, unless the matroid is the direct-sum of two lines. We also prove that, for any integer k, in complex-representable matroids with rank at least 2k-1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$2k-1$$end{document}, the average size of a rank-k flat is bounded above by a constant depending only on k. Finally, we prove that, for any integer r⩾2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$rgeqslant 2$$end{document}, the average flat-size in rank-r complex-representable matroids is bounded above by a constant depending only on r. We obtain our results using a theorem, due to Ben Lund, that gives a good estimate on the number of rank-k flats in a complex-representable matroid.
{"title":"Average plane-size in complex-representable matroids","authors":"Rutger Campbell, Jim Geelen, Matthew E. Kroeker","doi":"10.1007/s00493-025-00181-z","DOIUrl":"https://doi.org/10.1007/s00493-025-00181-z","url":null,"abstract":"Melchior’s inequality implies that the average line-length in a simple, rank-3, real-representable matroid is less than 3. A similar result holds for complex-representable matroids, using Hirzebruch’s inequality, but with a weaker bound of 4. We show that the average plane-size in a simple, rank-4, complex-representable matroid is bounded above by an absolute constant, unless the matroid is the direct-sum of two lines. We also prove that, for any integer <italic>k</italic>, in complex-representable matroids with rank at least <inline-formula><alternatives><mml:math><mml:mrow><mml:mn>2</mml:mn><mml:mi>k</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$2k-1$$end{document}</tex-math><inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_181_Article_IEq1.gif\"></inline-graphic></alternatives></inline-formula>, the average size of a rank-<italic>k</italic> flat is bounded above by a constant depending only on <italic>k</italic>. Finally, we prove that, for any integer <inline-formula><alternatives><mml:math><mml:mrow><mml:mi>r</mml:mi><mml:mo>⩾</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$rgeqslant 2$$end{document}</tex-math><inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_181_Article_IEq2.gif\"></inline-graphic></alternatives></inline-formula>, the average flat-size in rank-<italic>r</italic> complex-representable matroids is bounded above by a constant depending only on <italic>r</italic>. We obtain our results using a theorem, due to Ben Lund, that gives a good estimate on the number of rank-<italic>k</italic> flats in a complex-representable matroid.","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"42 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local recognition of affine rank 3 graphs 仿射3阶图的局部识别
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-10-10 DOI: 10.1007/s00493-025-00176-w
Đorđe Mitrović, Jeroen Schillewaert, Hendrik Van Maldeghem
We provide local recognition results for all infinite families of affine rank 3 graphs which are not locally a disjoint union of cliques and which are not 1-dimensional (that is, for the graphs corresponding to Liebeck’s classes (A3) up to (A10) of affine rank 3 groups). We show that the local graphs alone do not characterise the global graphs by providing counterexamples. Our principal result is that the global graph is determined by the local if one adds the condition that the number of vertices adjacent to two given vertices at distance 2 from each other is a constant. Alternative conditions for specific classes are also given.
我们提供了所有的仿射3阶图的无限族的局部识别结果,这些图局部不是团的不相交并不是一维的(即对应于仿射3阶群的Liebeck类(A3)到(A10)的图)。我们通过提供反例来证明局部图本身并不能表征全局图。我们的主要结果是,如果加上两个给定顶点之间距离为2的相邻顶点的数量为常数的条件,则全局图由局部图决定。还给出了特定类的可选条件。
{"title":"Local recognition of affine rank 3 graphs","authors":"Đorđe Mitrović, Jeroen Schillewaert, Hendrik Van Maldeghem","doi":"10.1007/s00493-025-00176-w","DOIUrl":"https://doi.org/10.1007/s00493-025-00176-w","url":null,"abstract":"We provide local recognition results for all infinite families of affine rank 3 graphs which are not locally a disjoint union of cliques and which are not 1-dimensional (that is, for the graphs corresponding to Liebeck’s classes (A3) up to (A10) of affine rank 3 groups). We show that the local graphs alone do not characterise the global graphs by providing counterexamples. Our principal result is that the global graph is determined by the local if one adds the condition that the number of vertices adjacent to two given vertices at distance 2 from each other is a constant. Alternative conditions for specific classes are also given.","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"9 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On k-uniform Tight Cycles: the Ramsey Number for documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$C_{kn}^{(k)}$$end{document} and an Approximate Lehel’s Conjecture On k-uniform Tight Cycles: the Ramsey Number for documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$C_{kn}^{(k)}$$end{document} and an Approximate Lehel’s Conjecture
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-09-09 DOI: 10.1007/s00493-025-00173-z
Vincent Pfenninger
A <italic>k</italic>-<italic>uniform tight cycle</italic> is a <italic>k</italic>-graph with a cyclic ordering of its vertices such that its edges are precisely the sets of <italic>k</italic> consecutive vertices in that ordering. We show that, for each <inline-formula><alternatives><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k ge 3$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_173_Article_IEq3.gif"></inline-graphic></alternatives></inline-formula>, the Ramsey number of the <italic>k</italic>-uniform tight cycle on <italic>kn</italic> vertices is <inline-formula><alternatives><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$(1+o(1))(k+1)n$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_173_Article_IEq4.gif"></inline-graphic></alternatives></inline-formula>. This is an extension to all uniformities of previous results for <inline-formula><alternatives><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k = 3$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_173_Article_IEq5.gif"></inline-graphic></alternatives></inline-formula> by Haxell, Łuczak, Peng, Rödl, Ruciński, and Skokan and for <inline-formula><alternatives><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k = 4$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_173_Article_IEq6.gif"></inline-graphic></alternatives></inline-formula> by Lo and the author and confirms a special case of a conjecture by the former set of authors. Lehel’s conjecture, which was proved by Bessy and Thomassé, states that every red-blue edge-coloured complete graph contains a red cycle and a blue cycle that are vertex-disjoint and together cover all the vertices. We also prove an approximate version of this for <italic>k</italic>-uniform tight cycles. We show that, for every <inline-formula><alternatives><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k ge 3$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-us
A k-uniform tight cycle is a k-graph with a cyclic ordering of its vertices such that its edges are precisely the sets of k consecutive vertices in that ordering. We show that, for each documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k ge 3$$end{document}, the Ramsey number of the k-uniform tight cycle on kn vertices is documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$(1+o(1))(k+1)n$$end{document}. This is an extension to all uniformities of previous results for documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k = 3$$end{document} by Haxell, Łuczak, Peng, Rödl, Ruciński, and Skokan and for documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k = 4$$end{document} by Lo and the author and confirms a special case of a conjecture by the former set of authors. Lehel’s conjecture, which was proved by Bessy and Thomassé, states that every red-blue edge-coloured complete graph contains a red cycle and a blue cycle that are vertex-disjoint and together cover all the vertices. We also prove an approximate version of this for k-uniform tight cycles. We show that, for every documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k ge 3$$end{document}, every red-blue edge-coloured complete k-graph on n vertices contains a red tight cycle and a blue tight cycle that are vertex-disjoint and together cover documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$n - o(n)$$end{document} vertices.
{"title":"On k-uniform Tight Cycles: the Ramsey Number for documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$C_{kn}^{(k)}$$end{document} and an Approximate Lehel’s Conjecture","authors":"Vincent Pfenninger","doi":"10.1007/s00493-025-00173-z","DOIUrl":"https://doi.org/10.1007/s00493-025-00173-z","url":null,"abstract":"A &lt;italic&gt;k&lt;/italic&gt;-&lt;italic&gt;uniform tight cycle&lt;/italic&gt; is a &lt;italic&gt;k&lt;/italic&gt;-graph with a cyclic ordering of its vertices such that its edges are precisely the sets of &lt;italic&gt;k&lt;/italic&gt; consecutive vertices in that ordering. We show that, for each &lt;inline-formula&gt;&lt;alternatives&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k ge 3$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_173_Article_IEq3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt;, the Ramsey number of the &lt;italic&gt;k&lt;/italic&gt;-uniform tight cycle on &lt;italic&gt;kn&lt;/italic&gt; vertices is &lt;inline-formula&gt;&lt;alternatives&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$(1+o(1))(k+1)n$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_173_Article_IEq4.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt;. This is an extension to all uniformities of previous results for &lt;inline-formula&gt;&lt;alternatives&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k = 3$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_173_Article_IEq5.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt; by Haxell, Łuczak, Peng, Rödl, Ruciński, and Skokan and for &lt;inline-formula&gt;&lt;alternatives&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k = 4$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_173_Article_IEq6.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt; by Lo and the author and confirms a special case of a conjecture by the former set of authors. Lehel’s conjecture, which was proved by Bessy and Thomassé, states that every red-blue edge-coloured complete graph contains a red cycle and a blue cycle that are vertex-disjoint and together cover all the vertices. We also prove an approximate version of this for &lt;italic&gt;k&lt;/italic&gt;-uniform tight cycles. We show that, for every &lt;inline-formula&gt;&lt;alternatives&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k ge 3$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-us","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"20 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weak saturation rank: a failure of the linear algebraic approach to weak saturation 弱饱和等级:弱饱和线性代数方法的失败
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-09-09 DOI: 10.1007/s00493-025-00174-y
Nikolai Terekhov, Maksim Zhukovskii
Given a graph <italic>F</italic> and a positive integer <italic>n</italic>, the weak <italic>F</italic>-saturation number <inline-formula><alternatives><mml:math><mml:mrow><mml:mtext>wsat</mml:mtext><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>K</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mi>F</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${textrm{wsat}}(K_n,F)$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_174_Article_IEq1.gif"></inline-graphic></alternatives></inline-formula> is the minimum number of edges in a graph <italic>H</italic> on <italic>n</italic> vertices such that the edges missing in <italic>H</italic> can be added, one at a time, so that every edge creates a copy of <italic>F</italic>. Kalai in 1985 introduced a linear algebraic approach that became one of the most efficient tools to prove lower bounds on weak saturation numbers. Let <italic>W</italic> be a vector space spanned by vectors <italic>w</italic>(<italic>e</italic>) assigned to edges <italic>e</italic> of <inline-formula><alternatives><mml:math><mml:msub><mml:mi>K</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$K_n$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_174_Article_IEq2.gif"></inline-graphic></alternatives></inline-formula>. Suppose that, for every copy <inline-formula><alternatives><mml:math><mml:mrow><mml:msup><mml:mi>F</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mo>⊂</mml:mo><mml:msub><mml:mi>K</mml:mi><mml:mi>n</mml:mi></mml:msub></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$F'subset K_n$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_174_Article_IEq3.gif"></inline-graphic></alternatives></inline-formula> of <italic>F</italic>, there exist non-zero scalars <inline-formula><alternatives><mml:math><mml:msub><mml:mi>λ</mml:mi><mml:mi>e</mml:mi></mml:msub></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$lambda _e$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_174_Article_IEq4.gi
Given a graph F and a positive integer n, the weak F-saturation number wsat(Kn,F)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${textrm{wsat}}(K_n,F)$$end{document} is the minimum number of edges in a graph H on n vertices such that the edges missing in H can be added, one at a time, so that every edge creates a copy of F. Kalai in 1985 introduced a linear algebraic approach that became one of the most efficient tools to prove lower bounds on weak saturation numbers. Let W be a vector space spanned by vectors w(e) assigned to edges e of Kndocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$K_n$$end{document}. Suppose that, for every copy F′⊂Kndocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$F'subset K_n$$end{document} of F, there exist non-zero scalars λedocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$lambda _e$$end{document}, e∈E(F′)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$ein E(F')$$end{document}, satisfying ∑e∈E(F′)λew(e)=0documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$sum _{ein E(F')}lambda _e w(e)=0$$end{document}. Then dimW≤wsat(Kn,F)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$textrm{dim}Wle {textrm{wsat}}(K_n,F)$$end{document}. In this paper, we prove limitations of this approach: we find infinitely many F such that, for every vector space W as above, dimW<wsat(Kn,F)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$textrm{dim}W<{textrm{wsat}}(K_n,F)$$end{document}. We also introduce a modification of this approach that yields tight lower bounds even when the original direct approach is insufficient. Finally, we generalise our results to random graphs, complete multipartite graphs, and h
{"title":"Weak saturation rank: a failure of the linear algebraic approach to weak saturation","authors":"Nikolai Terekhov, Maksim Zhukovskii","doi":"10.1007/s00493-025-00174-y","DOIUrl":"https://doi.org/10.1007/s00493-025-00174-y","url":null,"abstract":"Given a graph &lt;italic&gt;F&lt;/italic&gt; and a positive integer &lt;italic&gt;n&lt;/italic&gt;, the weak &lt;italic&gt;F&lt;/italic&gt;-saturation number &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:mtext&gt;wsat&lt;/mml:mtext&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;K&lt;/mml:mi&gt;&lt;mml:mi&gt;n&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mi&gt;F&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${textrm{wsat}}(K_n,F)$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_174_Article_IEq1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt; is the minimum number of edges in a graph &lt;italic&gt;H&lt;/italic&gt; on &lt;italic&gt;n&lt;/italic&gt; vertices such that the edges missing in &lt;italic&gt;H&lt;/italic&gt; can be added, one at a time, so that every edge creates a copy of &lt;italic&gt;F&lt;/italic&gt;. Kalai in 1985 introduced a linear algebraic approach that became one of the most efficient tools to prove lower bounds on weak saturation numbers. Let &lt;italic&gt;W&lt;/italic&gt; be a vector space spanned by vectors &lt;italic&gt;w&lt;/italic&gt;(&lt;italic&gt;e&lt;/italic&gt;) assigned to edges &lt;italic&gt;e&lt;/italic&gt; of &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;K&lt;/mml:mi&gt;&lt;mml:mi&gt;n&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$K_n$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_174_Article_IEq2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt;. Suppose that, for every copy &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;F&lt;/mml:mi&gt;&lt;mml:mo&gt;′&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mo&gt;⊂&lt;/mml:mo&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;K&lt;/mml:mi&gt;&lt;mml:mi&gt;n&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$F'subset K_n$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_174_Article_IEq3.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt; of &lt;italic&gt;F&lt;/italic&gt;, there exist non-zero scalars &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:msub&gt;&lt;mml:mi&gt;λ&lt;/mml:mi&gt;&lt;mml:mi&gt;e&lt;/mml:mi&gt;&lt;/mml:msub&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$lambda _e$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_174_Article_IEq4.gi","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"43 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coloring, list coloring, and fractional coloring in intersections of matroids 拟阵交点的着色、列表着色和分数着色
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-09-09 DOI: 10.1007/s00493-025-00178-8
Ron Aharoni, Eli Berger, He Guo, Dani Kotlar
It is known that in matroids the difference between the chromatic number and the fractional chromatic number is smaller than 1, and that the list chromatic number is equal to the chromatic number. We investigate the gap within these pairs of parameters for hypergraphs that are the intersection of a given number k of matroids. We prove that in such hypergraphs the list chromatic number is at most k times the chromatic number and at most 2k-1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$2k-1$$end{document} times the maximum chromatic number among the k matroids. We study the relationship between three polytopes associated with k-sets of matroids, and connect them to bounds on the fractional chromatic number of the intersection of the members of the k-set. This also connects to bounds on the matroidal matching and covering number of the intersection of the members of the k-set. The tools used are in part topological.
It is known that in matroids the difference between the chromatic number and the fractional chromatic number is smaller than 1, and that the list chromatic number is equal to the chromatic number. We investigate the gap within these pairs of parameters for hypergraphs that are the intersection of a given number k of matroids. We prove that in such hypergraphs the list chromatic number is at most k times the chromatic number and at most 2k-1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$2k-1$$end{document} times the maximum chromatic number among the k matroids. We study the relationship between three polytopes associated with k-sets of matroids, and connect them to bounds on the fractional chromatic number of the intersection of the members of the k-set. This also connects to bounds on the matroidal matching and covering number of the intersection of the members of the k-set. The tools used are in part topological.
{"title":"Coloring, list coloring, and fractional coloring in intersections of matroids","authors":"Ron Aharoni, Eli Berger, He Guo, Dani Kotlar","doi":"10.1007/s00493-025-00178-8","DOIUrl":"https://doi.org/10.1007/s00493-025-00178-8","url":null,"abstract":"It is known that in matroids the difference between the chromatic number and the fractional chromatic number is smaller than 1, and that the list chromatic number is equal to the chromatic number. We investigate the gap within these pairs of parameters for hypergraphs that are the intersection of a given number <italic>k</italic> of matroids. We prove that in such hypergraphs the list chromatic number is at most <italic>k</italic> times the chromatic number and at most <inline-formula><alternatives><mml:math><mml:mrow><mml:mn>2</mml:mn><mml:mi>k</mml:mi><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$2k-1$$end{document}</tex-math><inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_178_Article_IEq1.gif\"></inline-graphic></alternatives></inline-formula> times the maximum chromatic number among the <italic>k</italic> matroids. We study the relationship between three polytopes associated with <italic>k</italic>-sets of matroids, and connect them to bounds on the fractional chromatic number of the intersection of the members of the <italic>k</italic>-set. This also connects to bounds on the matroidal matching and covering number of the intersection of the members of the <italic>k</italic>-set. The tools used are in part topological.","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"19 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extension Property for Partial Automorphisms of the n-partite and Semigeneric Tournaments n部竞赛和半属竞赛的部分自同构的可拓性
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-09-09 DOI: 10.1007/s00493-025-00179-7
Jan Hubička, Colin Jahel, Matěj Konečný, Marcin Sabok
We present a proof of the extension property for partial automorphisms (EPPA) for classes of finite n-partite tournaments for n{2,3,,ω}documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$n in {2,3,ldots ,omega }$$end{document}, and for the class of finite semigeneric tournaments. We also prove that the generic ωdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$omega $$end{document}-partite tournament and the generic semigeneric tournament have ample generics.
We present a proof of the extension property for partial automorphisms (EPPA) for classes of finite n-partite tournaments for n∈{2,3,…,ω}documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$n in {2,3,ldots ,omega }$$end{document}, and for the class of finite semigeneric tournaments. We also prove that the generic ωdocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$omega $$end{document}-partite tournament and the generic semigeneric tournament have ample generics.
{"title":"Extension Property for Partial Automorphisms of the n-partite and Semigeneric Tournaments","authors":"Jan Hubička, Colin Jahel, Matěj Konečný, Marcin Sabok","doi":"10.1007/s00493-025-00179-7","DOIUrl":"https://doi.org/10.1007/s00493-025-00179-7","url":null,"abstract":"We present a proof of the extension property for partial automorphisms (EPPA) for classes of finite <italic>n</italic>-partite tournaments for <inline-formula><alternatives><mml:math><mml:mrow><mml:mi>n</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy=\"false\">{</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:mi>ω</mml:mi><mml:mo stretchy=\"false\">}</mml:mo></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$n in {2,3,ldots ,omega }$$end{document}</tex-math><inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_179_Article_IEq1.gif\"></inline-graphic></alternatives></inline-formula>, and for the class of finite semigeneric tournaments. We also prove that the generic <inline-formula><alternatives><mml:math><mml:mi>ω</mml:mi></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$omega $$end{document}</tex-math><inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_179_Article_IEq2.gif\"></inline-graphic></alternatives></inline-formula>-partite tournament and the generic semigeneric tournament have ample generics.","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"84 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete Brunn–Minkowski inequality for subsets of the cube 立方体子集的离散Brunn-Minkowski不等式
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-09-09 DOI: 10.1007/s00493-025-00180-0
Lars Becker, Paata Ivanisvili, Dmitry Krachun, José Madrid
We show that for all <inline-formula><alternatives><mml:math><mml:mrow><mml:mi>A</mml:mi><mml:mo>,</mml:mo><mml:mi>B</mml:mi><mml:mo>⊆</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow><mml:mi>d</mml:mi></mml:msup></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$A, B subseteq {0,1,2}^{d}$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_180_Article_IEq1.gif"></inline-graphic></alternatives></inline-formula> we have <disp-formula><alternatives><mml:math display="block"><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>A</mml:mi><mml:mo>+</mml:mo><mml:mi>B</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>⩾</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">|</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">|</mml:mo><mml:mi>B</mml:mi><mml:mo stretchy="false">|</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mfrac><mml:mrow><mml:mo>log</mml:mo><mml:mn>5</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>log</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:mfrac></mml:msup><mml:mo>.</mml:mo></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$|A+B|geqslant (|A||B|)^frac{log 5}{2log 3}.$$end{document}</tex-math><graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_180_Article_Equ37.gif"></graphic></alternatives></disp-formula>We also show that for all finite <inline-formula><alternatives><mml:math><mml:mrow><mml:mi>A</mml:mi><mml:mo>,</mml:mo><mml:mi>B</mml:mi><mml:mo>⊂</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mi>d</mml:mi></mml:msup></mml:mrow></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$A,B subset mathbb {Z}^{d}$$end{document}</tex-math><inline-graphic mime-subtype="GIF" specific-use="web" xlink:href="493_2025_180_Article_IEq2.gif"></inline-graphic></alternatives></inline-formula>, and any <inline-formula><alternatives><mml:math><mml:mrow><mml:mi>V</mml:mi><mml:mo>⊆</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow><mml:mi>d</mml:mi></mml:msup></mml:mrow></mml:math><tex-math>documentclass[12
We show that for all A,B⊆{0,1,2}ddocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$A, B subseteq {0,1,2}^{d}$$end{document} we have |A+B|⩾(|A||B|)log52log3.documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$|A+B|geqslant (|A||B|)^frac{log 5}{2log 3}.$$end{document}We also show that for all finite A,B⊂Zddocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$A,B subset mathbb {Z}^{d}$$end{document}, and any V⊆{0,1}ddocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$V subseteq {0,1}^{d}$$end{document} the inequality |A+B+V|⩾|A|1/p|B|1/q|V|log2(p1/pq1/q)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$|A+B+V|geqslant |A|^{1/p}|B|^{1/q}|V|^{log _{2}(p^{1/p}q^{1/q})}$$end{document}holds for all p∈(1,∞)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$p in (1, infty )$$end{document}, where q=pp-1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$q=frac{p}{p-1}$$end{document} is the conjugate exponent of p. All the estimates are dimension free with the best possible exponents. We discuss applications to various related problems.
{"title":"Discrete Brunn–Minkowski inequality for subsets of the cube","authors":"Lars Becker, Paata Ivanisvili, Dmitry Krachun, José Madrid","doi":"10.1007/s00493-025-00180-0","DOIUrl":"https://doi.org/10.1007/s00493-025-00180-0","url":null,"abstract":"We show that for all &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;A&lt;/mml:mi&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mi&gt;B&lt;/mml:mi&gt;&lt;mml:mo&gt;⊆&lt;/mml:mo&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;{&lt;/mml:mo&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;mml:mo stretchy=\"false\"&gt;}&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mi&gt;d&lt;/mml:mi&gt;&lt;/mml:msup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$A, B subseteq {0,1,2}^{d}$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_180_Article_IEq1.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt; we have &lt;disp-formula&gt;&lt;alternatives&gt;&lt;mml:math display=\"block\"&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt;&lt;mml:mi&gt;A&lt;/mml:mi&gt;&lt;mml:mo&gt;+&lt;/mml:mo&gt;&lt;mml:mi&gt;B&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mo&gt;⩾&lt;/mml:mo&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt;&lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt;&lt;mml:mi&gt;A&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt;&lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt;&lt;mml:mi&gt;B&lt;/mml:mi&gt;&lt;mml:mo stretchy=\"false\"&gt;|&lt;/mml:mo&gt;&lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mfrac&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;log&lt;/mml:mo&gt;&lt;mml:mn&gt;5&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mn&gt;2&lt;/mml:mn&gt;&lt;mml:mo&gt;log&lt;/mml:mo&gt;&lt;mml:mn&gt;3&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:mfrac&gt;&lt;/mml:msup&gt;&lt;mml:mo&gt;.&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$|A+B|geqslant (|A||B|)^frac{log 5}{2log 3}.$$end{document}&lt;/tex-math&gt;&lt;graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_180_Article_Equ37.gif\"&gt;&lt;/graphic&gt;&lt;/alternatives&gt;&lt;/disp-formula&gt;We also show that for all finite &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;A&lt;/mml:mi&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mi&gt;B&lt;/mml:mi&gt;&lt;mml:mo&gt;⊂&lt;/mml:mo&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"double-struck\"&gt;Z&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;mml:mi&gt;d&lt;/mml:mi&gt;&lt;/mml:msup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$A,B subset mathbb {Z}^{d}$$end{document}&lt;/tex-math&gt;&lt;inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_180_Article_IEq2.gif\"&gt;&lt;/inline-graphic&gt;&lt;/alternatives&gt;&lt;/inline-formula&gt;, and any &lt;inline-formula&gt;&lt;alternatives&gt;&lt;mml:math&gt;&lt;mml:mrow&gt;&lt;mml:mi&gt;V&lt;/mml:mi&gt;&lt;mml:mo&gt;⊆&lt;/mml:mo&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mo stretchy=\"false\"&gt;{&lt;/mml:mo&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;mml:mo&gt;,&lt;/mml:mo&gt;&lt;mml:mn&gt;1&lt;/mml:mn&gt;&lt;mml:mo stretchy=\"false\"&gt;}&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mi&gt;d&lt;/mml:mi&gt;&lt;/mml:msup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt;&lt;tex-math&gt;documentclass[12","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"4 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trees and near-linear stable sets 树与近线性稳定集
IF 1.1 2区 数学 Q1 MATHEMATICS Pub Date : 2025-09-09 DOI: 10.1007/s00493-025-00177-9
Tung Nguyen, Alex Scott, Paul Seymour
When H is a forest, the Gyárfás-Sumner conjecture implies that every graph G with no induced subgraph isomorphic to H and with bounded clique number has a stable set of linear size. We cannot prove that, but we prove that every such graph G has a stable set of size |G|1-o(1)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$|G|^{1-o(1)}$$end{document}. If H is not a forest, there need not be such a stable set. Second, we prove that when H is a “multibroom”, there is a stable set of linear size. As a consequence, we deduce that all multibrooms satisfy a “fractional colouring” version of the Gyárfás-Sumner conjecture. Finally, we discuss extensions of our results to the multicolour setting.
When H is a forest, the Gyárfás-Sumner conjecture implies that every graph G with no induced subgraph isomorphic to H and with bounded clique number has a stable set of linear size. We cannot prove that, but we prove that every such graph G has a stable set of size |G|1-o(1)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$|G|^{1-o(1)}$$end{document}. If H is not a forest, there need not be such a stable set. Second, we prove that when H is a “multibroom”, there is a stable set of linear size. As a consequence, we deduce that all multibrooms satisfy a “fractional colouring” version of the Gyárfás-Sumner conjecture. Finally, we discuss extensions of our results to the multicolour setting.
{"title":"Trees and near-linear stable sets","authors":"Tung Nguyen, Alex Scott, Paul Seymour","doi":"10.1007/s00493-025-00177-9","DOIUrl":"https://doi.org/10.1007/s00493-025-00177-9","url":null,"abstract":"When <italic>H</italic> is a forest, the Gyárfás-Sumner conjecture implies that every graph <italic>G</italic> with no induced subgraph isomorphic to <italic>H</italic> and with bounded clique number has a stable set of linear size. We cannot prove that, but we prove that every such graph <italic>G</italic> has a stable set of size <inline-formula><alternatives><mml:math><mml:msup><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>-</mml:mo><mml:mi>o</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:msup></mml:math><tex-math>documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$|G|^{1-o(1)}$$end{document}</tex-math><inline-graphic mime-subtype=\"GIF\" specific-use=\"web\" xlink:href=\"493_2025_177_Article_IEq1.gif\"></inline-graphic></alternatives></inline-formula>. If <italic>H</italic> is not a forest, there need not be such a stable set. Second, we prove that when <italic>H</italic> is a “multibroom”, there is a stable set of linear size. As a consequence, we deduce that all multibrooms satisfy a “fractional colouring” version of the Gyárfás-Sumner conjecture. Finally, we discuss extensions of our results to the multicolour setting.","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"40 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145914898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Combinatorica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1