首页 > 最新文献

Cluster Computing-The Journal of Networks Software Tools and Applications最新文献

英文 中文
Secure peer-to-peer learning using feature embeddings 使用特征嵌入确保点对点学习
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-13 DOI: 10.1007/s10586-023-04155-y
Anirudh Kasturi, Akshat Agrawal, Chittaranjan Hota
{"title":"Secure peer-to-peer learning using feature embeddings","authors":"Anirudh Kasturi, Akshat Agrawal, Chittaranjan Hota","doi":"10.1007/s10586-023-04155-y","DOIUrl":"https://doi.org/10.1007/s10586-023-04155-y","url":null,"abstract":"","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135854188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Improved clustering-based hybrid recommendation system to offer personalized cloud services 修正:改进基于聚类的混合推荐系统,提供个性化的云服务
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-11 DOI: 10.1007/s10586-023-04167-8
Hajer Nabli, Raoudha Ben Djemaa, Ikram Amous Ben Amor
{"title":"Correction: Improved clustering-based hybrid recommendation system to offer personalized cloud services","authors":"Hajer Nabli, Raoudha Ben Djemaa, Ikram Amous Ben Amor","doi":"10.1007/s10586-023-04167-8","DOIUrl":"https://doi.org/10.1007/s10586-023-04167-8","url":null,"abstract":"","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136062727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parallel and streaming wavelet neural networks for classification and regression under apache spark 并行和流小波神经网络分类和回归在apache spark
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-10 DOI: 10.1007/s10586-023-04150-3
Harindra Venkatesh Eduru, Yelleti Vivek, Vadlamani Ravi, Orsu Shiva Shankar
{"title":"Parallel and streaming wavelet neural networks for classification and regression under apache spark","authors":"Harindra Venkatesh Eduru, Yelleti Vivek, Vadlamani Ravi, Orsu Shiva Shankar","doi":"10.1007/s10586-023-04150-3","DOIUrl":"https://doi.org/10.1007/s10586-023-04150-3","url":null,"abstract":"","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136295419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy efficient power cap configurations through Pareto front analysis and machine learning categorization 通过帕累托前分析和机器学习分类的节能电源帽配置
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-10 DOI: 10.1007/s10586-023-04151-2
Alberto Cabrera, Francisco Almeida, Dagoberto Castellanos-Nieves, Ariel Oleksiak, Vicente Blanco
Abstract The growing demand for more computing resources has increased the overall energy consumption of computer systems. To support this increasing demand, power and energy consumption must be considered as a constraint on software execution. Modern architectures provide tools for managing the power constraints of a system directly. The Intel Power Cap is a relatively new tool developed to give users fine-grained control over power usage at the central processing unit (CPU) level. The complexity of these tools, in addition to the high variety of modern heterogeneous architectures, hinders predictions of the energy consumption and the performance of any target software. The application of power capping technologies usually leads to the bi-objective optimization problem for energy efficiency and execution time but optimal power constraints could also produce exceeding performance losses. Thus, methods and tools are needed to calculate the proper parameters for power capping technologies, and to optimize energy efficiency. We propose a methodology to analyze the performance and the energy efficiency trade-offs using this power cap technology for a given application. A Pareto front is extracted for the multi-objective performance and energy problem, which represents multiple feasible configurations for both objectives. An extensive experimentation is carried out to categorize the different applications to determine the overall optimal power cap configurations. We propose the use of machine learning (ML) clustering techniques to categorize each application in the target architecture. The use of ML allows us to automate the process and simplifies the effort required to solve the optimization problem. A practical case is presented where we categorize the applications using ML techniques, with the possibility of adding a new application into an existing categorization.
随着对计算资源需求的不断增长,计算机系统的整体能耗也随之增加。为了支持这种不断增长的需求,必须将功率和能源消耗视为软件执行的约束。现代体系结构提供了直接管理系统的功率约束的工具。Intel Power Cap是一种相对较新的工具,可以让用户在中央处理单元(CPU)级别对电源使用情况进行细粒度控制。这些工具的复杂性,加上现代异构体系结构的多样性,阻碍了对任何目标软件的能耗和性能的预测。功率封顶技术的应用通常会导致能源效率和执行时间的双目标优化问题,但最优功率约束也可能产生过大的性能损失。因此,需要方法和工具来计算功率封顶技术的适当参数,并优化能源效率。我们提出了一种方法来分析性能和能源效率的权衡使用这种功率上限技术为给定的应用程序。针对多目标性能和能量问题,提取了一个Pareto前,它代表了两个目标的多个可行配置。进行了广泛的实验,对不同的应用进行分类,以确定总体最佳功率帽配置。我们建议使用机器学习(ML)聚类技术对目标架构中的每个应用程序进行分类。机器学习的使用使我们能够自动化这个过程,并简化了解决优化问题所需的努力。给出了一个实际案例,其中我们使用ML技术对应用程序进行分类,并有可能将新应用程序添加到现有分类中。
{"title":"Energy efficient power cap configurations through Pareto front analysis and machine learning categorization","authors":"Alberto Cabrera, Francisco Almeida, Dagoberto Castellanos-Nieves, Ariel Oleksiak, Vicente Blanco","doi":"10.1007/s10586-023-04151-2","DOIUrl":"https://doi.org/10.1007/s10586-023-04151-2","url":null,"abstract":"Abstract The growing demand for more computing resources has increased the overall energy consumption of computer systems. To support this increasing demand, power and energy consumption must be considered as a constraint on software execution. Modern architectures provide tools for managing the power constraints of a system directly. The Intel Power Cap is a relatively new tool developed to give users fine-grained control over power usage at the central processing unit (CPU) level. The complexity of these tools, in addition to the high variety of modern heterogeneous architectures, hinders predictions of the energy consumption and the performance of any target software. The application of power capping technologies usually leads to the bi-objective optimization problem for energy efficiency and execution time but optimal power constraints could also produce exceeding performance losses. Thus, methods and tools are needed to calculate the proper parameters for power capping technologies, and to optimize energy efficiency. We propose a methodology to analyze the performance and the energy efficiency trade-offs using this power cap technology for a given application. A Pareto front is extracted for the multi-objective performance and energy problem, which represents multiple feasible configurations for both objectives. An extensive experimentation is carried out to categorize the different applications to determine the overall optimal power cap configurations. We propose the use of machine learning (ML) clustering techniques to categorize each application in the target architecture. The use of ML allows us to automate the process and simplifies the effort required to solve the optimization problem. A practical case is presented where we categorize the applications using ML techniques, with the possibility of adding a new application into an existing categorization.","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136294038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SETL: a transfer learning based dynamic ensemble classifier for concept drift detection in streaming data SETL:基于迁移学习的动态集成分类器,用于流数据中的概念漂移检测
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-09 DOI: 10.1007/s10586-023-04149-w
Shruti Arora, Rinkle Rani, Nitin Saxena
{"title":"SETL: a transfer learning based dynamic ensemble classifier for concept drift detection in streaming data","authors":"Shruti Arora, Rinkle Rani, Nitin Saxena","doi":"10.1007/s10586-023-04149-w","DOIUrl":"https://doi.org/10.1007/s10586-023-04149-w","url":null,"abstract":"","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Federated learning for feature-fusion based requirement classification 基于特征融合的需求分类的联邦学习
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-09 DOI: 10.1007/s10586-023-04147-y
Ruiwen Wang, Jihong Liu, Qiang Zhang, Chao Fu, Yongzhu hou
{"title":"Federated learning for feature-fusion based requirement classification","authors":"Ruiwen Wang, Jihong Liu, Qiang Zhang, Chao Fu, Yongzhu hou","doi":"10.1007/s10586-023-04147-y","DOIUrl":"https://doi.org/10.1007/s10586-023-04147-y","url":null,"abstract":"","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135045217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring and analyzing as a service (MAaaS) through cloud edge based on intelligent transportation applications 基于智能交通应用的云边缘监控和分析即服务(MAaaS)
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-06 DOI: 10.1007/s10586-023-04146-z
Olfa Souki, Raoudha Ben Djemaa, Ikram Amous, Florence Sedes
{"title":"Monitoring and analyzing as a service (MAaaS) through cloud edge based on intelligent transportation applications","authors":"Olfa Souki, Raoudha Ben Djemaa, Ikram Amous, Florence Sedes","doi":"10.1007/s10586-023-04146-z","DOIUrl":"https://doi.org/10.1007/s10586-023-04146-z","url":null,"abstract":"","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135345721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cybersecurity for autonomous vehicles against malware attacks in smart-cities 智能城市中自动驾驶汽车抵御恶意软件攻击的网络安全
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-03 DOI: 10.1007/s10586-023-04114-7
Sana Aurangzeb, Muhammad Aleem, Muhammad Taimoor Khan, Haris Anwar, Muhammad Shaoor Siddique
Abstract Smart Autonomous Vehicles (AVSs) are networks of Cyber-Physical Systems (CPSs) in which they wirelessly communicate with other CPSs sub-systems (e.g., smart -vehicles and smart-devices) to efficiently and securely plan safe travel. Due to unreliable wireless communication among them, such vehicles are an easy target of malware attacks that may compromise vehicles’ autonomy, increase inter-vehicle communication latency, and drain vehicles’ power. Such compromises may result in traffic congestion, threaten the safety of passengers, and can result in financial loss. Therefore, real-time detection of such attacks is key to the safe smart transportation and Intelligent Transport Systems (ITSs). Current approaches either employ static analysis or dynamic analysis techniques to detect such attacks. However, these approaches may not detect malware in real-time because of zero-day attacks and huge computational resources. Therefore, we introduce a hybrid approach that combines the strength of both analyses to efficiently detect malware for the privacy of smart-cities.
智能自动驾驶汽车(avs)是网络物理系统(cps)的网络,它们与其他cps子系统(例如智能车辆和智能设备)进行无线通信,以有效和安全地规划安全旅行。由于它们之间的无线通信不可靠,这些车辆很容易成为恶意软件攻击的目标,这可能会损害车辆的自主性,增加车间通信延迟,并耗尽车辆的电力。这种妥协可能会导致交通拥堵,威胁乘客的安全,并可能造成经济损失。因此,实时检测此类攻击是安全智能交通和智能交通系统(its)的关键。当前的方法采用静态分析或动态分析技术来检测此类攻击。然而,由于零日攻击和巨大的计算资源,这些方法可能无法实时检测恶意软件。因此,我们引入了一种混合方法,结合了两种分析的强度,以有效地检测智能城市隐私的恶意软件。
{"title":"Cybersecurity for autonomous vehicles against malware attacks in smart-cities","authors":"Sana Aurangzeb, Muhammad Aleem, Muhammad Taimoor Khan, Haris Anwar, Muhammad Shaoor Siddique","doi":"10.1007/s10586-023-04114-7","DOIUrl":"https://doi.org/10.1007/s10586-023-04114-7","url":null,"abstract":"Abstract Smart Autonomous Vehicles (AVSs) are networks of Cyber-Physical Systems (CPSs) in which they wirelessly communicate with other CPSs sub-systems (e.g., smart -vehicles and smart-devices) to efficiently and securely plan safe travel. Due to unreliable wireless communication among them, such vehicles are an easy target of malware attacks that may compromise vehicles’ autonomy, increase inter-vehicle communication latency, and drain vehicles’ power. Such compromises may result in traffic congestion, threaten the safety of passengers, and can result in financial loss. Therefore, real-time detection of such attacks is key to the safe smart transportation and Intelligent Transport Systems (ITSs). Current approaches either employ static analysis or dynamic analysis techniques to detect such attacks. However, these approaches may not detect malware in real-time because of zero-day attacks and huge computational resources. Therefore, we introduce a hybrid approach that combines the strength of both analyses to efficiently detect malware for the privacy of smart-cities.","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135695470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Federated deep reinforcement learning-based online task offloading and resource allocation in harsh mobile edge computing environment 恶劣移动边缘计算环境下基于深度强化学习的联合在线任务卸载与资源分配
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-03 DOI: 10.1007/s10586-023-04143-2
Hui Xiang, Meiyu Zhang, Chengfeng Jian
{"title":"Federated deep reinforcement learning-based online task offloading and resource allocation in harsh mobile edge computing environment","authors":"Hui Xiang, Meiyu Zhang, Chengfeng Jian","doi":"10.1007/s10586-023-04143-2","DOIUrl":"https://doi.org/10.1007/s10586-023-04143-2","url":null,"abstract":"","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135695763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative study of optimization algorithms for feature selection on ML-based classification of agricultural data 基于机器学习的农业数据分类特征选择优化算法比较研究
3区 计算机科学 Q1 Computer Science Pub Date : 2023-10-03 DOI: 10.1007/s10586-023-04165-w
Zeynep Garip, Ekin Ekinci, Murat Erhan Çimen
{"title":"A comparative study of optimization algorithms for feature selection on ML-based classification of agricultural data","authors":"Zeynep Garip, Ekin Ekinci, Murat Erhan Çimen","doi":"10.1007/s10586-023-04165-w","DOIUrl":"https://doi.org/10.1007/s10586-023-04165-w","url":null,"abstract":"","PeriodicalId":50674,"journal":{"name":"Cluster Computing-The Journal of Networks Software Tools and Applications","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135689820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cluster Computing-The Journal of Networks Software Tools and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1