首页 > 最新文献

Astrophysical Journal最新文献

英文 中文
The Intracluster Light and Its Link with the Dynamical State of the Host Group/Cluster: The Role of the Halo Concentration 星团内光及其与主机组/星团动态状态的联系:光晕浓度的作用
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acfd25
Emanuele Contini, Seyoung Jeon, Jinsu Rhee, San Han, Sukyoung K. Yi
Abstract We investigate the role of halo concentration in the formation of intracluster light (ICL) in galaxy groups and clusters, as predicted by a state-of-the-art semianalytic model of galaxy formation, coupled with a set of high-resolution dark-matter-only simulations. The analysis focuses on how the fraction of ICL correlates with halo mass, concentration, and fraction of early-type galaxies (ETGs) in a large sample of groups and clusters with 13.0 log M halo 15.0 . The fraction of ICL follows a normal distribution, a consequence of the stochastic nature of the physical processes responsible for the formation of the diffuse light. The fractional budget of ICL depends on both halo mass (very weakly) until group scales, and concentration (remarkably). More interestingly, the ICL fraction is higher in more concentrated objects, a result of the stronger tidal forces acting in the innermost regions of the halos where the concentration is the quantity playing the most relevant role. Our model predictions do not show any dependence between the ICL and ETGs fractions, and so we instead suggest the concentration rather than the mass, as recently claimed, to be the main driver of the ICL formation. The diffuse light starts to form in groups via stellar stripping and mergers and later assembled in more-massive objects. However, the formation and assembly keep going on group/cluster scales at lower redshift through the same processes, mainly via stellar stripping in the vicinity of the central regions where tidal forces are stronger.
摘要:我们研究了光晕浓度在星系团和星系团中形成星系团内光(ICL)中的作用,正如最先进的星系形成半解析模型所预测的那样,结合一组高分辨率的暗物质模拟。分析的重点是在13.0≤log M晕≤15.0的大样本群和星团中,ICL的比例如何与晕质量、浓度和早期型星系(etg)的比例相关。ICL的分数遵循正态分布,这是负责形成漫射光的物理过程的随机性质的结果。ICL的分数预算依赖于光晕质量(非常弱)和浓度(显著)。更有趣的是,在浓度越高的天体中,ICL分数越高,这是由于在晕的最内层区域作用的潮汐力更强,在那里浓度是起最相关作用的量。我们的模型预测没有显示出ICL和ETGs组分之间的任何依赖关系,因此我们建议浓度而不是质量,正如最近声称的那样,是ICL形成的主要驱动因素。漫射光开始通过恒星剥离和合并形成群体,然后聚集成更大质量的物体。然而,在低红移的团/星团尺度上,形成和聚集通过同样的过程继续进行,主要是通过潮汐力更强的中心区域附近的恒星剥离。
{"title":"The Intracluster Light and Its Link with the Dynamical State of the Host Group/Cluster: The Role of the Halo Concentration","authors":"Emanuele Contini, Seyoung Jeon, Jinsu Rhee, San Han, Sukyoung K. Yi","doi":"10.3847/1538-4357/acfd25","DOIUrl":"https://doi.org/10.3847/1538-4357/acfd25","url":null,"abstract":"Abstract We investigate the role of halo concentration in the formation of intracluster light (ICL) in galaxy groups and clusters, as predicted by a state-of-the-art semianalytic model of galaxy formation, coupled with a set of high-resolution dark-matter-only simulations. The analysis focuses on how the fraction of ICL correlates with halo mass, concentration, and fraction of early-type galaxies (ETGs) in a large sample of groups and clusters with <?CDATA $13.0leqslant mathrm{log}{M}_{mathrm{halo}}leqslant 15.0$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>13.0</mml:mn> <mml:mo>≤</mml:mo> <mml:mi>log</mml:mi> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>halo</mml:mi> </mml:mrow> </mml:msub> <mml:mo>≤</mml:mo> <mml:mn>15.0</mml:mn> </mml:math> . The fraction of ICL follows a normal distribution, a consequence of the stochastic nature of the physical processes responsible for the formation of the diffuse light. The fractional budget of ICL depends on both halo mass (very weakly) until group scales, and concentration (remarkably). More interestingly, the ICL fraction is higher in more concentrated objects, a result of the stronger tidal forces acting in the innermost regions of the halos where the concentration is the quantity playing the most relevant role. Our model predictions do not show any dependence between the ICL and ETGs fractions, and so we instead suggest the concentration rather than the mass, as recently claimed, to be the main driver of the ICL formation. The diffuse light starts to form in groups via stellar stripping and mergers and later assembled in more-massive objects. However, the formation and assembly keep going on group/cluster scales at lower redshift through the same processes, mainly via stellar stripping in the vicinity of the central regions where tidal forces are stronger.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"139 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135714766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Hale-like Cycle in the Solar Twin 18 Scorpii 太阳双星18天蝎座的海尔式周期
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acfc1a
J.-D. do Nascimento, S. A. Barnes, S. H. Saar, G. F. Porto de Mello, J. C. Hall, F. Anthony, L. de Almeida, E. N. Velloso, J. S. da Costa, P. Petit, A. Strugarek, B. J. Wargelin, M. Castro, K. G. Strassmeier, A. S. Brun
Abstract Characterizing the cyclic magnetic activity of stars that are close approximations of our Sun offers our best hope for understanding our Sun’s current and past magnetism, the space weather around solar-type stars, and more generally, the dynamos of other cool stars. The nearest current approximation to the Sun is the solar twin 18 Scorpii, a naked-eye Sun-like star of spectral type G2 Va. However, while 18 Scorpii’s physical parameters closely match those of the Sun, its activity cycle is about 7 yr, and shorter than the solar cycle. We report the measurement of a periodicity of 15 yr that corresponds to a longer activity cycle for 18 Scorpii based on observations extending to the last three decades. The global magnetic geometry of 18 Scorpii changes with this 15 yr cycle and appears to be equivalent to the solar 22 yr magnetic polarity cycle. These results suggest that 18 Scorpii is also a magnetic proxy for a younger Sun, adding an important new datum for testing dynamo theory and magnetic evolution of low-mass stars. The results perturb our understanding of the relationship between cycle and rotation, constrain the Sun’s magnetism and the Sun–Earth connection over the past billion years, and suggest that solar Schwabe and Hale cycle periods have increased over that time span.
描述与太阳非常接近的恒星的周期性磁活动,为我们理解太阳当前和过去的磁性、太阳型恒星周围的空间天气,以及更普遍的其他冷恒星的发电机提供了最大的希望。目前最接近太阳的是太阳孪生星天蝎座18,一颗光谱类型为G2 Va的类太阳恒星。然而,虽然天蝎座18的物理参数与太阳非常接近,但它的活动周期约为7年,比太阳周期短。根据过去三十年的观测,我们报告了15年的周期测量,对应于18天蝎座的更长的活动周期。天蝎座18的全球磁性几何形状随着这15年的周期而变化,似乎相当于太阳22年的磁极周期。这些结果表明,天蝎座18也是年轻太阳的磁性代理,为测试发电机理论和低质量恒星的磁性演化提供了重要的新数据。这些结果扰乱了我们对周期和自转之间关系的理解,限制了过去十亿年来太阳的磁力和太阳与地球的联系,并表明太阳的施瓦贝和黑尔周期在这段时间内有所增加。
{"title":"A Hale-like Cycle in the Solar Twin 18 Scorpii","authors":"J.-D. do Nascimento, S. A. Barnes, S. H. Saar, G. F. Porto de Mello, J. C. Hall, F. Anthony, L. de Almeida, E. N. Velloso, J. S. da Costa, P. Petit, A. Strugarek, B. J. Wargelin, M. Castro, K. G. Strassmeier, A. S. Brun","doi":"10.3847/1538-4357/acfc1a","DOIUrl":"https://doi.org/10.3847/1538-4357/acfc1a","url":null,"abstract":"Abstract Characterizing the cyclic magnetic activity of stars that are close approximations of our Sun offers our best hope for understanding our Sun’s current and past magnetism, the space weather around solar-type stars, and more generally, the dynamos of other cool stars. The nearest current approximation to the Sun is the solar twin 18 Scorpii, a naked-eye Sun-like star of spectral type G2 Va. However, while 18 Scorpii’s physical parameters closely match those of the Sun, its activity cycle is about 7 yr, and shorter than the solar cycle. We report the measurement of a periodicity of 15 yr that corresponds to a longer activity cycle for 18 Scorpii based on observations extending to the last three decades. The global magnetic geometry of 18 Scorpii changes with this 15 yr cycle and appears to be equivalent to the solar 22 yr magnetic polarity cycle. These results suggest that 18 Scorpii is also a magnetic proxy for a younger Sun, adding an important new datum for testing dynamo theory and magnetic evolution of low-mass stars. The results perturb our understanding of the relationship between cycle and rotation, constrain the Sun’s magnetism and the Sun–Earth connection over the past billion years, and suggest that solar Schwabe and Hale cycle periods have increased over that time span.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"21 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135715172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining Baryon Loading Efficiency of Active Galactic Nuclei with Diffuse Neutrino Flux from Galaxy Clusters 星系团散射中微子通量对活动星系核重子加载效率的约束
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acfa79
Xin-Yue Shi, Ruo-Yu Liu, Chong Ge, Xiang-Yu Wang
Abstract Active galactic nuclei (AGNs) are widely believed to be one of the promising acceleration sites of ultrahigh-energy cosmic rays (CRs). Essentially, AGNs are powered by the gravitational energy of matter falling into supermassive black holes. However, the conversion efficiency of gravitational to kinetic energy of CRs in AGNs, which is defined as the baryon loading factor η p , is not well known yet. After being accelerated, high-energy CRs could escape the host galaxy and enter the intracluster medium (ICM). These CRs can be confined within the galaxy cluster and produce γ -rays and neutrinos through proton–proton collisions with the ICM. In this paper, we study the diffusion of CRs in galaxy clusters and calculate the diffuse neutrino flux from the galaxy cluster population. Using the latest upper limits on the cumulative unresolved TeV–PeV neutrino flux from galaxy clusters posed by the IceCube Neutrino Observatory, we derive the upper limit of the average baryon loading factor as η p ,grav ≲ 2 × 10 −3 − 0.1 for the population of galaxy clusters. This constraint is more stringent than the one obtained from γ -ray observation on the Coma cluster.
活动星系核(agn)被广泛认为是超高能宇宙射线(CRs)最有希望的加速点之一。本质上,agn是由落入超大质量黑洞的物质的引力能提供动力的。然而,用重子装载因子η p来定义agn中CRs的引力到动能的转换效率尚不清楚。经过加速后,高能cr可以逃离宿主星系,进入星系团内介质(ICM)。这些CRs可以被限制在星系团内,并通过与ICM的质子-质子碰撞产生γ射线和中微子。本文研究了cr在星系团中的扩散,并计算了星系团总体的扩散中微子通量。利用冰立方中微子天文台给出的星系团累积未解析TeV-PeV中微子通量的最新上限,我们推导出星系团总体的平均重子负荷因子的上限为η p,重力> 2 × 10−3−0.1。这个约束比从后发星团的γ射线观测得到的约束更为严格。
{"title":"Constraining Baryon Loading Efficiency of Active Galactic Nuclei with Diffuse Neutrino Flux from Galaxy Clusters","authors":"Xin-Yue Shi, Ruo-Yu Liu, Chong Ge, Xiang-Yu Wang","doi":"10.3847/1538-4357/acfa79","DOIUrl":"https://doi.org/10.3847/1538-4357/acfa79","url":null,"abstract":"Abstract Active galactic nuclei (AGNs) are widely believed to be one of the promising acceleration sites of ultrahigh-energy cosmic rays (CRs). Essentially, AGNs are powered by the gravitational energy of matter falling into supermassive black holes. However, the conversion efficiency of gravitational to kinetic energy of CRs in AGNs, which is defined as the baryon loading factor η p , is not well known yet. After being accelerated, high-energy CRs could escape the host galaxy and enter the intracluster medium (ICM). These CRs can be confined within the galaxy cluster and produce γ -rays and neutrinos through proton–proton collisions with the ICM. In this paper, we study the diffusion of CRs in galaxy clusters and calculate the diffuse neutrino flux from the galaxy cluster population. Using the latest upper limits on the cumulative unresolved TeV–PeV neutrino flux from galaxy clusters posed by the IceCube Neutrino Observatory, we derive the upper limit of the average baryon loading factor as η p ,grav ≲ 2 × 10 −3 − 0.1 for the population of galaxy clusters. This constraint is more stringent than the one obtained from γ -ray observation on the Coma cluster.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"7 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135410177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Interpreting the IBEX Ribbon with Mirror Diffusion in Interstellar Turbulent Magnetic Fields 星际湍流磁场中镜像扩散对IBEX带的解释
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acfca5
Siyao 思遥 Xu 徐, Hui 晖 Li 李
Abstract We investigate the role of the magnetohydrodynamic (MHD) turbulence measured by Voyager in the very local interstellar medium (VLISM) in modeling the Interstellar Boundary Explorer ribbon. We demonstrate that the mirroring by compressible modes of MHD turbulence dominates over that by the mean magnetic field. Based on the new mirror diffusion mechanism identified by Lazarian & Xu for particles with large pitch angles in MHD turbulence, we find that the mirror diffusion can both confine pickup ions and preserve their initial pitch angles, and thus it accounts for the enhanced intensity of energetic neutral atoms that return to the heliosphere. The ribbon width is determined by both the range of pitch angles for effective turbulent mirroring and the field line wandering induced by Alfvénic modes. It in turn provides a constraint on the amplitude of magnetic fluctuations of fast modes. The field line wandering also affects the coherence of the ribbon structure across the sky. By extrapolating the magnetic energy spectrum measured by Voyager, we find that the injection scale of the turbulence in the VLISM must be less than ∼500 au for the ribbon structure to be coherent.
摘要:我们研究了旅行者号在极局部星际介质(vism)中测量的磁流体动力学(MHD)湍流在模拟星际边界探索者带中的作用。我们证明了MHD湍流的可压缩模式的镜像优于平均磁场的镜像。基于Lazarian &对于MHD湍流中具有大俯仰角的粒子,我们发现镜像扩散既可以限制吸收离子,又可以保持它们的初始俯仰角,因此它解释了高能中性原子返回日球层的强度增强。条带宽度由有效紊流镜像的俯仰角范围和由alfv录影带模式引起的场线漂移共同决定。它反过来又提供了对快模磁波动幅度的约束。磁场线的漂移也影响了带状结构在天空中的相干性。通过外推旅行者号测量的磁能谱,我们发现VLISM中湍流的注入尺度必须小于~ 500 au,带状结构才能相干。
{"title":"Toward Interpreting the IBEX Ribbon with Mirror Diffusion in Interstellar Turbulent Magnetic Fields","authors":"Siyao 思遥 Xu 徐, Hui 晖 Li 李","doi":"10.3847/1538-4357/acfca5","DOIUrl":"https://doi.org/10.3847/1538-4357/acfca5","url":null,"abstract":"Abstract We investigate the role of the magnetohydrodynamic (MHD) turbulence measured by Voyager in the very local interstellar medium (VLISM) in modeling the Interstellar Boundary Explorer ribbon. We demonstrate that the mirroring by compressible modes of MHD turbulence dominates over that by the mean magnetic field. Based on the new mirror diffusion mechanism identified by Lazarian &amp; Xu for particles with large pitch angles in MHD turbulence, we find that the mirror diffusion can both confine pickup ions and preserve their initial pitch angles, and thus it accounts for the enhanced intensity of energetic neutral atoms that return to the heliosphere. The ribbon width is determined by both the range of pitch angles for effective turbulent mirroring and the field line wandering induced by Alfvénic modes. It in turn provides a constraint on the amplitude of magnetic fluctuations of fast modes. The field line wandering also affects the coherence of the ribbon structure across the sky. By extrapolating the magnetic energy spectrum measured by Voyager, we find that the injection scale of the turbulence in the VLISM must be less than ∼500 au for the ribbon structure to be coherent.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135410182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Understanding the Duration of Solar and Stellar Flares at Various Wavelengths 了解不同波长太阳和恒星耀斑的持续时间
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acf45a
Jeffrey W. Reep, Vladimir S. Airapetian
Abstract Recent irradiance measurements from numerous heliophysics and astrophysics missions including Solar Dynamics Observatory (SDO), GOES, Kepler, TESS, Chandra, the X-ray Multi-Mirror Mission, and NICER have provided critical input into understanding the physics of the most powerful transient events on the Sun and magnetically active stars:solar and stellar flares. The light curves of flare events from the Sun and stars show remarkably similar shapes, typically with a sharp rise and protracted decay phase. The duration of solar and stellar flares has been found to be correlated with the intensity of the event in some wavelengths, such as white light, but not in other wavelengths, such as soft X-rays, but it is not evident why this is the case. In this study, we use a radiative hydrodynamics code to examine factors affecting the duration of flare emission at various wavelengths. The duration of a light curve depends on the temperature of the plasma, the height in the atmosphere at which the emission forms, and the relative importance of cooling due to radiation, thermal conduction, and enthalpy flux. We find that there is a clear distinction between emission that forms low in the atmosphere and responds directly to heating, and emission that forms in the corona, indirectly responding to heating-induced chromospheric evaporation, a facet of the Neupert effect. We discuss the implications of our results for a wide range of flare energies.
最近来自太阳动力学天文台(SDO)、GOES、开普勒、TESS、钱德拉、x射线多镜任务和NICER等众多太阳物理和天体物理任务的辐照度测量,为理解太阳和磁活跃恒星上最强大的瞬变事件(太阳和恒星耀斑)的物理特性提供了关键输入。来自太阳和恒星的耀斑事件的光曲线显示出非常相似的形状,典型的是急剧上升和漫长的衰减阶段。太阳和恒星耀斑的持续时间已被发现与某些波长(如白光)的耀斑强度相关,但与其他波长(如软x射线)的耀斑强度无关,但目前尚不清楚为什么会这样。在这项研究中,我们使用辐射流体动力学代码来检查影响耀斑在不同波长发射持续时间的因素。光曲线的持续时间取决于等离子体的温度、发射形成的大气高度,以及由于辐射、热传导和焓通量而冷却的相对重要性。我们发现,在低层大气中形成的直接响应加热的辐射与在日冕中形成的间接响应加热引起的色球蒸发(Neupert效应的一个方面)的辐射之间存在明显的区别。我们讨论了我们的结果对大范围的耀斑能量的影响。
{"title":"Understanding the Duration of Solar and Stellar Flares at Various Wavelengths","authors":"Jeffrey W. Reep, Vladimir S. Airapetian","doi":"10.3847/1538-4357/acf45a","DOIUrl":"https://doi.org/10.3847/1538-4357/acf45a","url":null,"abstract":"Abstract Recent irradiance measurements from numerous heliophysics and astrophysics missions including Solar Dynamics Observatory (SDO), GOES, Kepler, TESS, Chandra, the X-ray Multi-Mirror Mission, and NICER have provided critical input into understanding the physics of the most powerful transient events on the Sun and magnetically active stars:solar and stellar flares. The light curves of flare events from the Sun and stars show remarkably similar shapes, typically with a sharp rise and protracted decay phase. The duration of solar and stellar flares has been found to be correlated with the intensity of the event in some wavelengths, such as white light, but not in other wavelengths, such as soft X-rays, but it is not evident why this is the case. In this study, we use a radiative hydrodynamics code to examine factors affecting the duration of flare emission at various wavelengths. The duration of a light curve depends on the temperature of the plasma, the height in the atmosphere at which the emission forms, and the relative importance of cooling due to radiation, thermal conduction, and enthalpy flux. We find that there is a clear distinction between emission that forms low in the atmosphere and responds directly to heating, and emission that forms in the corona, indirectly responding to heating-induced chromospheric evaporation, a facet of the Neupert effect. We discuss the implications of our results for a wide range of flare energies.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-constrained Magnetohydrodynamic Simulation of an Intermediate Solar Filament Eruption 一次中间太阳细丝喷发的数据约束磁流体动力学模拟
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acf75b
Yang Guo, Jinhan Guo, Yiwei Ni, M. D. Ding, P. F. Chen, Chun Xia, Rony Keppens, Kai E. Yang
Abstract Solar eruptive activities could occur in weak magnetic field environments and over large spatial scales, which are especially relevant to eruptions involving intermediate or quiescent solar filaments. To handle the large scales, we implement and apply a flux rope embedding method using regularized Biot–Savart laws in the spherical coordinate system. Combined with a potential field source surface model and a magneto-frictional method, a nonlinear force-free field comprising a flux rope embedded in a potential field is constructed. Using the combined nonlinear force-free field as the initial condition, we then perform a zero- β data-constrained magnetohydrodynamic (MHD) simulation for an M8.7 flare at 03:38 UT on 2012 January 23. The MHD model reproduces the eruption process, flare ribbon evolution (represented by the quasi-separatrix layer evolution), and kinematics of the flux rope. This approach could potentially model global-scale eruptions from weak field regions.
太阳爆发活动可能发生在弱磁场环境和大空间尺度上,这与涉及中间或静止太阳细丝的喷发特别相关。为了处理大尺度,我们在球坐标系下实现并应用了正则化Biot-Savart定律的通量绳嵌入方法。结合势场源面模型和磁摩擦法,构造了嵌入势场的磁链非线性无力场。利用组合非线性无力场作为初始条件,对2012年1月23日03:38 UT的M8.7耀斑进行了0 - β数据约束的磁流体动力学(MHD)模拟。MHD模型再现了喷发过程、耀斑带演化(以准分离层演化为代表)和通量绳的运动学。这种方法有可能模拟弱磁场地区的全球规模的火山喷发。
{"title":"Data-constrained Magnetohydrodynamic Simulation of an Intermediate Solar Filament Eruption","authors":"Yang Guo, Jinhan Guo, Yiwei Ni, M. D. Ding, P. F. Chen, Chun Xia, Rony Keppens, Kai E. Yang","doi":"10.3847/1538-4357/acf75b","DOIUrl":"https://doi.org/10.3847/1538-4357/acf75b","url":null,"abstract":"Abstract Solar eruptive activities could occur in weak magnetic field environments and over large spatial scales, which are especially relevant to eruptions involving intermediate or quiescent solar filaments. To handle the large scales, we implement and apply a flux rope embedding method using regularized Biot–Savart laws in the spherical coordinate system. Combined with a potential field source surface model and a magneto-frictional method, a nonlinear force-free field comprising a flux rope embedded in a potential field is constructed. Using the combined nonlinear force-free field as the initial condition, we then perform a zero- β data-constrained magnetohydrodynamic (MHD) simulation for an M8.7 flare at 03:38 UT on 2012 January 23. The MHD model reproduces the eruption process, flare ribbon evolution (represented by the quasi-separatrix layer evolution), and kinematics of the flux rope. This approach could potentially model global-scale eruptions from weak field regions.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MHD in a Cylindrical Shearing Box. II. Intermittent Bursts and Substructures in MRI Turbulence 圆柱形剪切箱中的MHD。2MRI湍流中的间歇爆发和亚结构
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acfb88
Takeru K. Suzuki
Abstract By performing ideal magnetohydrodynamical (MHD) simulations with weak vertical magnetic fields in unstratified cylindrical shearing boxes with modified boundary treatment, we investigate MHD turbulence excited by magnetorotational instability. The cylindrical simulation exhibits extremely large temporal variation in the magnetic activity compared with the simulation in a normal Cartesian shearing box, although the time-averaged field strengths are comparable in the cylindrical and Cartesian setups. Detailed analysis of the terms describing magnetic energy evolution with “triangle diagrams” surprisingly reveals that in the cylindrical simulation the compression of toroidal magnetic field is unexpectedly as important as the winding due to differential rotation in amplifying magnetic fields and triggering intermittent magnetic bursts, which are not seen in the Cartesian simulation. The importance of the compressible amplification is also true for a cylindrical simulation with tiny curvature; the evolution of magnetic fields in the nearly Cartesian shearing box simulation is fundamentally different from that in the exact Cartesian counterpart. The radial gradient of epicyclic frequency , κ , which cannot be considered in the normal Cartesian shearing box model, is the cause of this fundamental difference. An additional consequence of the spatial variation of κ is continuous and ubiquitous formation of narrow high-density (low-density) and weak-field (strong-field) localized structures; seeds of these ring gap structures are created by the compressible effect and subsequently amplified and maintained under the marginally unstable condition regarding “viscous-type” instability.
摘要采用改进的边界处理方法,在无分层圆柱剪切箱中进行弱垂直磁场的理想磁流体动力学(MHD)模拟,研究了磁旋不稳定性激发的理想磁流体湍流。尽管时间平均场强在圆柱形和直角形条件下是相当的,但与正常笛卡尔剪切箱中的模拟相比,圆柱形模拟在磁场活动方面表现出极大的时间变化。对用“三角图”描述磁能演化的术语的详细分析令人惊讶地发现,在圆柱形模拟中,环形磁场的压缩出乎意料地与由于差分旋转而产生的绕组在放大磁场和触发间歇性磁暴方面一样重要,这在笛卡尔模拟中是看不到的。可压缩放大的重要性也适用于具有微小曲率的圆柱形模拟;近笛卡儿剪切箱模拟中的磁场演化与精确笛卡儿剪切箱模拟中的磁场演化有着根本的不同。正常笛卡尔剪切箱模型中不能考虑的周转频率κ的径向梯度是造成这种根本差异的原因。κ空间变化的另一个结果是连续和无处不在的狭窄高密度(低密度)和弱场(强场)局部结构的形成;这些环隙结构的种子是由可压缩效应产生的,随后在“粘滞型”不稳定的边缘不稳定条件下被放大和维持。
{"title":"MHD in a Cylindrical Shearing Box. II. Intermittent Bursts and Substructures in MRI Turbulence","authors":"Takeru K. Suzuki","doi":"10.3847/1538-4357/acfb88","DOIUrl":"https://doi.org/10.3847/1538-4357/acfb88","url":null,"abstract":"Abstract By performing ideal magnetohydrodynamical (MHD) simulations with weak vertical magnetic fields in unstratified cylindrical shearing boxes with modified boundary treatment, we investigate MHD turbulence excited by magnetorotational instability. The cylindrical simulation exhibits extremely large temporal variation in the magnetic activity compared with the simulation in a normal Cartesian shearing box, although the time-averaged field strengths are comparable in the cylindrical and Cartesian setups. Detailed analysis of the terms describing magnetic energy evolution with “triangle diagrams” surprisingly reveals that in the cylindrical simulation the compression of toroidal magnetic field is unexpectedly as important as the winding due to differential rotation in amplifying magnetic fields and triggering intermittent magnetic bursts, which are not seen in the Cartesian simulation. The importance of the compressible amplification is also true for a cylindrical simulation with tiny curvature; the evolution of magnetic fields in the nearly Cartesian shearing box simulation is fundamentally different from that in the exact Cartesian counterpart. The radial gradient of epicyclic frequency , κ , which cannot be considered in the normal Cartesian shearing box model, is the cause of this fundamental difference. An additional consequence of the spatial variation of κ is continuous and ubiquitous formation of narrow high-density (low-density) and weak-field (strong-field) localized structures; seeds of these ring gap structures are created by the compressible effect and subsequently amplified and maintained under the marginally unstable condition regarding “viscous-type” instability.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135410185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theory of Magnetic Switchbacks Fully Supported by Parker Solar Probe Observations 帕克太阳探测器观测完全支持磁转换理论
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acfd91
Gabor Toth, Marco Velli, Bart van der Holst
Abstract Magnetic switchbacks are rapid high-amplitude reversals of the radial magnetic field in the solar wind that do not involve a heliospheric current sheet crossing. First seen sporadically in the 1970s in Mariner and Helios data, switchbacks were later observed by the Ulysses spacecraft beyond 1 au and have been recently discovered to be a typical component of solar wind fluctuations in the inner heliosphere by the Parker Solar Probe spacecraft. While switchbacks are now well understood to be spherically polarized Alfvén waves thanks to Parker Solar Probe observations, their formation has been an intriguing and unsolved puzzle. Here we provide a simple yet predictive theory for the formation of these magnetic reversals: the switchbacks are produced by the distortion and twisting of circularly polarized Alfvén waves by a transversely varying radial wave propagation velocity. We provide an analytic expression for the magnetic field variation, establish the necessary and sufficient conditions for the formation of switchbacks, and show that the proposed mechanism works in a realistic solar wind scenario. We also show that the theoretical predictions are in excellent agreement with observations, and the high-amplitude radial oscillations are strongly correlated with the shear of the wave propagation speed. The correlation coefficient is around 0.3–0.5 for both encounter 1 and encounter 12. The probability of this being a lucky coincidence is essentially zero with p -values below 0.1%.
磁反转是太阳风中径向磁场的快速高振幅反转,不涉及日球层电流片的交叉。在20世纪70年代的水手号和太阳神号的数据中首次发现了这种现象,后来尤利西斯号在1au以外的地方观测到了这种现象,最近帕克号太阳探测器发现这是太阳风内部日球层波动的典型组成部分。虽然由于帕克太阳探测器的观测,现在已经很好地理解了回转波是球极化的阿尔夫萨芬波,但它们的形成一直是一个有趣的未解之谜。在这里,我们为这些磁反转的形成提供了一个简单而又可预测的理论:磁反转是由圆极化alfvsamn波在横向变化的径向波传播速度下的扭曲和扭曲产生的。我们给出了磁场变化的解析表达式,建立了转换形成的充分必要条件,并证明了所提出的机制在现实的太阳风场景下是有效的。我们还表明,理论预测与观测结果非常吻合,高振幅径向振荡与波传播速度的剪切密切相关。遭遇1和遭遇12的相关系数都在0.3-0.5左右。当p值低于0.1%时,这种幸运巧合的概率基本上为零。
{"title":"Theory of Magnetic Switchbacks Fully Supported by Parker Solar Probe Observations","authors":"Gabor Toth, Marco Velli, Bart van der Holst","doi":"10.3847/1538-4357/acfd91","DOIUrl":"https://doi.org/10.3847/1538-4357/acfd91","url":null,"abstract":"Abstract Magnetic switchbacks are rapid high-amplitude reversals of the radial magnetic field in the solar wind that do not involve a heliospheric current sheet crossing. First seen sporadically in the 1970s in Mariner and Helios data, switchbacks were later observed by the Ulysses spacecraft beyond 1 au and have been recently discovered to be a typical component of solar wind fluctuations in the inner heliosphere by the Parker Solar Probe spacecraft. While switchbacks are now well understood to be spherically polarized Alfvén waves thanks to Parker Solar Probe observations, their formation has been an intriguing and unsolved puzzle. Here we provide a simple yet predictive theory for the formation of these magnetic reversals: the switchbacks are produced by the distortion and twisting of circularly polarized Alfvén waves by a transversely varying radial wave propagation velocity. We provide an analytic expression for the magnetic field variation, establish the necessary and sufficient conditions for the formation of switchbacks, and show that the proposed mechanism works in a realistic solar wind scenario. We also show that the theoretical predictions are in excellent agreement with observations, and the high-amplitude radial oscillations are strongly correlated with the shear of the wave propagation speed. The correlation coefficient is around 0.3–0.5 for both encounter 1 and encounter 12. The probability of this being a lucky coincidence is essentially zero with p -values below 0.1%.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"62 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135411379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LIMpy: A Semianalytic Approach to Simulating Multiline Intensity Maps at Millimeter Wavelengths LIMpy:模拟毫米波长多线强度图的半解析方法
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acf92f
Anirban Roy, Dariannette Valentín-Martínez, Kailai Wang, Nicholas Battaglia, Alexander van Engelen
Abstract Mapping of multiple lines such as the fine-structure emission from [C ii ] (157.7 μ m), [O iii ] (52 and 88.4 μ m), and rotational emission lines from CO are of particular interest for upcoming line intensity mapping (LIM) experiments at millimeter wavelengths, due to their brightness features. Several upcoming experiments aim to cover a broad range of scientific goals, from detecting signatures of the epoch of reionization to the physics of star formation and its role in galaxy evolution. In this paper, we develop a semianalytic approach to modeling line strengths as functions of the star formation rate (SFR) or infrared luminosity based on observations of local and high- z galaxies. This package, LIMpy (Line Intensity Mapping in Python), estimates the intensity and power spectra of [C ii ], [O iii ], and CO rotational transition lines up to the J levels (1–0) to (13–12) based both on analytic formalism and on simulations. We develop a relation among halo mass, SFR, and multiline intensities that permits us to construct a generic formula for the evolution of several line strengths up to z ∼ 10. We implement a variety of star formation models and multiline luminosity relations to estimate the astrophysical uncertainties on the intensity power spectrum of these lines. As a demonstration, we predict the signal-to-noise ratio of [C ii ] detection for an EoR-Spec-like instrument on the Fred Young Submillimeter Telescope. Furthermore, the ability to use any halo catalog allows the LIMpy code to be easily integrated into existing simulation pipelines, providing a flexible tool to study intensity mapping in the context of complex galaxy formation physics.
[C ii] (157.7 μ m)、[O iii](52和88.4 μ m)的精细结构发射线以及CO的旋转发射线,由于其亮度特征,在即将到来的毫米波线强度测绘(LIM)实验中具有特别重要的意义。几个即将进行的实验旨在涵盖广泛的科学目标,从探测再电离时代的特征到恒星形成的物理学及其在星系演化中的作用。在本文中,我们开发了一种半解析方法来模拟线强度作为恒星形成速率(SFR)或红外光度的函数,这是基于对局部和高z星系的观测。这个包,LIMpy (Python中的线强度映射),基于解析形式化和模拟,估计了[C ii], [O iii]和CO旋转过渡线的强度和功率谱,直到J级(1-0)到(13-12)。我们开发了光晕质量、SFR和多线强度之间的关系,使我们能够构建一个通用公式,用于几种线强度的演变,直至z ~ 10。我们实现了各种恒星形成模型和多线光度关系来估计这些线的强度功率谱上的天体物理不确定性。作为演示,我们预测了Fred Young亚毫米望远镜上eor - spec类仪器的[C ii]探测的信噪比。此外,使用任何光晕目录的能力允许LIMpy代码轻松集成到现有的模拟管道中,为研究复杂星系形成物理背景下的强度映射提供了一个灵活的工具。
{"title":"LIMpy: A Semianalytic Approach to Simulating Multiline Intensity Maps at Millimeter Wavelengths","authors":"Anirban Roy, Dariannette Valentín-Martínez, Kailai Wang, Nicholas Battaglia, Alexander van Engelen","doi":"10.3847/1538-4357/acf92f","DOIUrl":"https://doi.org/10.3847/1538-4357/acf92f","url":null,"abstract":"Abstract Mapping of multiple lines such as the fine-structure emission from [C ii ] (157.7 μ m), [O iii ] (52 and 88.4 μ m), and rotational emission lines from CO are of particular interest for upcoming line intensity mapping (LIM) experiments at millimeter wavelengths, due to their brightness features. Several upcoming experiments aim to cover a broad range of scientific goals, from detecting signatures of the epoch of reionization to the physics of star formation and its role in galaxy evolution. In this paper, we develop a semianalytic approach to modeling line strengths as functions of the star formation rate (SFR) or infrared luminosity based on observations of local and high- z galaxies. This package, LIMpy (Line Intensity Mapping in Python), estimates the intensity and power spectra of [C ii ], [O iii ], and CO rotational transition lines up to the J levels (1–0) to (13–12) based both on analytic formalism and on simulations. We develop a relation among halo mass, SFR, and multiline intensities that permits us to construct a generic formula for the evolution of several line strengths up to z ∼ 10. We implement a variety of star formation models and multiline luminosity relations to estimate the astrophysical uncertainties on the intensity power spectrum of these lines. As a demonstration, we predict the signal-to-noise ratio of [C ii ] detection for an EoR-Spec-like instrument on the Fred Young Submillimeter Telescope. Furthermore, the ability to use any halo catalog allows the LIMpy code to be easily integrated into existing simulation pipelines, providing a flexible tool to study intensity mapping in the context of complex galaxy formation physics.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"28 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135371889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circumgalactic Medium at High Halo Masses—Signatures of Cold Gas Depletion in Luminous Red Galaxies 高晕质量的环星系介质——发光红色星系中冷气体耗竭的特征
2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-11-01 DOI: 10.3847/1538-4357/acf466
Marijana Smailagić, Jason Xavier Prochaska, Joseph Burchett, Guangtun Zhu
Abstract We study ultraviolet H i and metal-line transitions in the circumgalactic medium (CGM) of 15 massive, quenched luminous red galaxies (LRGs) at redshift z ∼ 0.5 and with impact parameters up to 400 kpc. We selected eight LRG–CGM systems to study general properties of the CGM around LRGs, while the other seven are already known to contain cool CGM gas from Mg ii optical studies (Mg ii -LRGs). In the general LRG population, we detect H i in four of eight LRGs, in all cases with N H I < 10 16.7 cm −2 . In contrast, all Mg ii -LRGs show H i ; for four LRGs, the H i column density is N H I ≳ 10 18 cm −2 . The CGM of LRGs also shows low and intermediate ionized lines (such as C iii , C ii , Si iii , and Si ii ) and highly ionized lines of O vi (we detect O vi around five of seven Mg ii -LRGs and one of eight in the random sample). Next, we combine our sample with literature LRGs and ≲ L * galaxies, and we find that while for ≲ L * galaxies CGM H i Ly α absorption is stronger as galaxies are more massive, the cool CGM traced by H i Ly α is suppressed above stellar masses of M * ∼ 10 11.5 M ☉ . While most LRG–CGM systems show weak or nondetectable O vi (equivalent width < 0.2 Å), a few LRG–CGM systems show strong O vi 1031, which in most cases likely originates from groups containing both an LRG and a blue star-forming neighboring galaxy.
摘要研究了15个大质量、淬灭红星系(LRGs)在红移z ~ 0.5、冲击参数高达400kpc的环星系介质(CGM)中的紫外H和金属谱线跃迁。我们选择了8个LRG-CGM系统来研究LRGs周围CGM的一般性质,而其他7个已经从Mg ii光学研究中已知含有冷CGM气体(Mg ii -LRGs)。在一般LRG人群中,我们在8个LRG中检测到4个i,在所有的nh i <病例中;10 16.7 cm−2。相反,所有Mg ii -LRGs均显示H i;对于4个LRGs, H i柱密度为N H i > 10 18 cm−2。LRGs的CGM也显示出低和中等电离谱线(如C iii、C ii、Si iii和Si ii)和O vi的高电离谱线(我们在7个Mg ii -LRGs中检测到5个O vi,在随机样本中检测到8个O vi)。接下来,我们将我们的样本与文献LRGs和> L *星系结合起来,我们发现对于> L *星系,随着星系质量的增加,CGM H i Ly α的吸收更强,而H i Ly α追踪到的冷CGM在恒星质量M * ~ 10 11.5 M☉以上被抑制。虽然大多数LRG-CGM系统显示弱或不可检测的O vi(等效宽度<0.2 Å),一些LRG - cgm系统显示出强烈的O vi 1031,在大多数情况下,它可能来自包含LRG和蓝色恒星形成邻近星系的星系群。
{"title":"Circumgalactic Medium at High Halo Masses—Signatures of Cold Gas Depletion in Luminous Red Galaxies","authors":"Marijana Smailagić, Jason Xavier Prochaska, Joseph Burchett, Guangtun Zhu","doi":"10.3847/1538-4357/acf466","DOIUrl":"https://doi.org/10.3847/1538-4357/acf466","url":null,"abstract":"Abstract We study ultraviolet H i and metal-line transitions in the circumgalactic medium (CGM) of 15 massive, quenched luminous red galaxies (LRGs) at redshift z ∼ 0.5 and with impact parameters up to 400 kpc. We selected eight LRG–CGM systems to study general properties of the CGM around LRGs, while the other seven are already known to contain cool CGM gas from Mg ii optical studies (Mg ii -LRGs). In the general LRG population, we detect H i in four of eight LRGs, in all cases with N H I < 10 16.7 cm −2 . In contrast, all Mg ii -LRGs show H i ; for four LRGs, the H i column density is N H I ≳ 10 18 cm −2 . The CGM of LRGs also shows low and intermediate ionized lines (such as C iii , C ii , Si iii , and Si ii ) and highly ionized lines of O vi (we detect O vi around five of seven Mg ii -LRGs and one of eight in the random sample). Next, we combine our sample with literature LRGs and ≲ L * galaxies, and we find that while for ≲ L * galaxies CGM H i Ly α absorption is stronger as galaxies are more massive, the cool CGM traced by H i Ly α is suppressed above stellar masses of M * ∼ 10 11.5 M ☉ . While most LRG–CGM systems show weak or nondetectable O vi (equivalent width < 0.2 Å), a few LRG–CGM systems show strong O vi 1031, which in most cases likely originates from groups containing both an LRG and a blue star-forming neighboring galaxy.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":"28 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135371890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Astrophysical Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1