首页 > 最新文献

Annual Review of Biophysics最新文献

英文 中文
Emergent Spatiotemporal Organization in Stochastic Intracellular Transport Dynamics. 随机细胞内运输动力学中的新兴时空组织
IF 10.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI: 10.1146/annurev-biophys-030422-044448
Kunaal Joshi, Harrison M York, Charles S Wright, Rudro R Biswas, Senthil Arumugam, Srividya Iyer-Biswas

The interior of a living cell is an active, fluctuating, and crowded environment, yet it maintains a high level of coherent organization. This dichotomy is readily apparent in the intracellular transport system of the cell. Membrane-bound compartments called endosomes play a key role in carrying cargo, in conjunction with myriad components including cargo adaptor proteins, membrane sculptors, motor proteins, and the cytoskeleton. These components coordinate to effectively navigate the crowded cell interior and transport cargo to specific intracellular locations, even though the underlying protein interactions and enzymatic reactions exhibit stochastic behavior. A major challenge is to measure, analyze, and understand how, despite the inherent stochasticity of the constituent processes, the collective outcomes show an emergent spatiotemporal order that is precise and robust. This review focuses on this intriguing dichotomy, providing insights into the known mechanisms of noise suppression and noise utilization in intracellular transport processes, and also identifies opportunities for future inquiry.

活细胞的内部是一个活跃、波动和拥挤的环境,但却保持着高度的一致性。这种对立在细胞内运输系统中显而易见。被称为 "内体 "的与膜结合的隔室在运载货物方面发挥着关键作用,它与包括货物适配蛋白、膜雕刻机、运动蛋白和细胞骨架在内的多种成分共同发挥作用。尽管基本的蛋白质相互作用和酶反应表现出随机行为,但这些成分相互协调,有效地在拥挤的细胞内部导航,并将货物运送到特定的细胞内位置。如何测量、分析和理解尽管组成过程具有固有的随机性,但集体结果如何显示出精确而稳健的新兴时空秩序,是一大挑战。这篇综述将重点关注这一引人入胜的二分法,深入探讨细胞内转运过程中噪声抑制和噪声利用的已知机制,并指出未来研究的机遇。生物物理学年刊》第 53 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"Emergent Spatiotemporal Organization in Stochastic Intracellular Transport Dynamics.","authors":"Kunaal Joshi, Harrison M York, Charles S Wright, Rudro R Biswas, Senthil Arumugam, Srividya Iyer-Biswas","doi":"10.1146/annurev-biophys-030422-044448","DOIUrl":"10.1146/annurev-biophys-030422-044448","url":null,"abstract":"<p><p>The interior of a living cell is an active, fluctuating, and crowded environment, yet it maintains a high level of coherent organization. This dichotomy is readily apparent in the intracellular transport system of the cell. Membrane-bound compartments called endosomes play a key role in carrying cargo, in conjunction with myriad components including cargo adaptor proteins, membrane sculptors, motor proteins, and the cytoskeleton. These components coordinate to effectively navigate the crowded cell interior and transport cargo to specific intracellular locations, even though the underlying protein interactions and enzymatic reactions exhibit stochastic behavior. A major challenge is to measure, analyze, and understand how, despite the inherent stochasticity of the constituent processes, the collective outcomes show an emergent spatiotemporal order that is precise and robust. This review focuses on this intriguing dichotomy, providing insights into the known mechanisms of noise suppression and noise utilization in intracellular transport processes, and also identifies opportunities for future inquiry.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":"193-220"},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fitness Landscapes and Evolution of Catalytic RNA. 催化 RNA 的适应性景观和进化。
IF 10.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1146/annurev-biophys-030822-025038
Ranajay Saha, Alberto Vázquez-Salazar, Aditya Nandy, Irene A Chen

The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.

基因型与表型之间的关系,即适应性景观,是基因工程和进化的基础。然而,由于需要大量可量化的数据,绘制适应度景观图是一项重大的技术挑战。由于催化 RNA 的序列空间相对较小,加之其在合成生物学中的重要性,因此催化 RNA 是适合度图谱研究中的一个特殊课题。体外选择和高通量测序的结合最近提供了完整和局部 RNA 适应性景观的经验图谱,但天文数字般大小的序列空间限制了纯粹的实验研究。接下来的步骤很可能涉及使用各种机器学习技术对序列空间进行数据驱动的内插法和外推法。我们讨论了在理解 RNA 适应性景观方面的最新进展,特别是在原细胞和 RNA 的机器表征方面。这些技术进步可能会在不久的将来对合成生物学产生重大影响。
{"title":"Fitness Landscapes and Evolution of Catalytic RNA.","authors":"Ranajay Saha, Alberto Vázquez-Salazar, Aditya Nandy, Irene A Chen","doi":"10.1146/annurev-biophys-030822-025038","DOIUrl":"https://doi.org/10.1146/annurev-biophys-030822-025038","url":null,"abstract":"<p><p>The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"53 1","pages":"109-125"},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomolecular Condensates in Contact with Membranes. 与膜接触的生物分子凝结物。
IF 10.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI: 10.1146/annurev-biophys-030722-121518
Agustín Mangiarotti, Rumiana Dimova

Biomolecular condensates are highly versatile membraneless organelles involved in a plethora of cellular processes. Recent years have witnessed growing evidence of the interaction of these droplets with membrane-bound cellular structures. Condensates' adhesion to membranes can cause their mutual molding and regulation, and their interaction is of fundamental relevance to intracellular organization and communication, organelle remodeling, embryogenesis, and phagocytosis. In this article, we review advances in the understanding of membrane-condensate interactions, with a focus on in vitro models. These minimal systems allow the precise characterization and tuning of the material properties of both membranes and condensates and provide a workbench for visualizing the resulting morphologies and quantifying the interactions. These interactions can give rise to diverse biologically relevant phenomena, such as molecular-level restructuring of the membrane, nano- to microscale ruffling of the condensate-membrane interface, and coupling of the protein and lipid phases.

生物分子凝聚体是一种用途广泛的无膜细胞器,参与了大量的细胞过程。近年来,越来越多的证据表明,这些液滴与有膜的细胞结构之间存在相互作用。凝集素与膜的粘附可导致它们的相互塑形和调节,它们之间的相互作用与细胞内组织和通讯、细胞器重塑、胚胎发生和吞噬具有根本的相关性。在本文中,我们以体外模型为重点,回顾了在了解膜-凝集素相互作用方面取得的进展。这些最小系统可精确表征和调整膜与凝聚物的材料特性,并为可视化所产生的形态和量化相互作用提供工作台。这些相互作用可产生多种生物相关现象,如膜的分子级重组、凝结物-膜界面的纳米级到微米级皱褶以及蛋白质相和脂质相的耦合。生物物理学年刊》第 53 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"Biomolecular Condensates in Contact with Membranes.","authors":"Agustín Mangiarotti, Rumiana Dimova","doi":"10.1146/annurev-biophys-030722-121518","DOIUrl":"10.1146/annurev-biophys-030722-121518","url":null,"abstract":"<p><p>Biomolecular condensates are highly versatile membraneless organelles involved in a plethora of cellular processes. Recent years have witnessed growing evidence of the interaction of these droplets with membrane-bound cellular structures. Condensates' adhesion to membranes can cause their mutual molding and regulation, and their interaction is of fundamental relevance to intracellular organization and communication, organelle remodeling, embryogenesis, and phagocytosis. In this article, we review advances in the understanding of membrane-condensate interactions, with a focus on in vitro models. These minimal systems allow the precise characterization and tuning of the material properties of both membranes and condensates and provide a workbench for visualizing the resulting morphologies and quantifying the interactions. These interactions can give rise to diverse biologically relevant phenomena, such as molecular-level restructuring of the membrane, nano- to microscale ruffling of the condensate-membrane interface, and coupling of the protein and lipid phases.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":"319-341"},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk. 不同层次的线粒体动力学:从晶状体动力学到细胞器间的交叉对话
IF 10.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI: 10.1146/annurev-biophys-030822-020736
Arun Kumar Kondadi, Andreas S Reichert

Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (a) within an individual mitochondrion, (b) among mitochondria, and (c) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.

线粒体是一种重要的细胞器,具有重要的细胞功能,包括生物能和新陈代谢、细胞凋亡信号转导和免疫反应等。它们在不同的结构和功能水平上都具有高度动态性。研究表明,线粒体不断发生融合和裂变过程,并与内质网、过氧物酶体和脂滴等其他细胞器发生动态相互作用。线粒体动力学领域与先进的荧光超分辨率纳米镜等技术成果同步发展。最近发现的单个线粒体内嵴膜的动态重塑为线粒体动力学开辟了另一个令人兴奋的层面。在本综述中,我们将从以下几个层面讨论线粒体动力学:(a)单个线粒体内部,(b)线粒体之间,以及(c)线粒体与其他细胞器之间。虽然线粒体动力学的这三个层次在过去是按等级划分的,但它们在功能上是相互关联的,必须以协调的方式发挥作用才能维持细胞功能,从而预防各种人类疾病。预计《生物物理学年刊》(第 53 卷)的最终在线出版日期为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"Mitochondrial Dynamics at Different Levels: From Cristae Dynamics to Interorganellar Cross Talk.","authors":"Arun Kumar Kondadi, Andreas S Reichert","doi":"10.1146/annurev-biophys-030822-020736","DOIUrl":"10.1146/annurev-biophys-030822-020736","url":null,"abstract":"<p><p>Mitochondria are essential organelles performing important cellular functions ranging from bioenergetics and metabolism to apoptotic signaling and immune responses. They are highly dynamic at different structural and functional levels. Mitochondria have been shown to constantly undergo fusion and fission processes and dynamically interact with other organelles such as the endoplasmic reticulum, peroxisomes, and lipid droplets. The field of mitochondrial dynamics has evolved hand in hand with technological achievements including advanced fluorescence super-resolution nanoscopy. Dynamic remodeling of the cristae membrane within individual mitochondria, discovered very recently, opens up a further exciting layer of mitochondrial dynamics. In this review, we discuss mitochondrial dynamics at the following levels: (<i>a</i>) within an individual mitochondrion, (<i>b</i>) among mitochondria, and (<i>c</i>) between mitochondria and other organelles. Although the three tiers of mitochondrial dynamics have in the past been classified in a hierarchical manner, they are functionally connected and must act in a coordinated manner to maintain cellular functions and thus prevent various human diseases.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":"147-168"},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139081095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure Function Studies of Photosystem II Using X-Ray Free Electron Lasers. 利用 X 射线自由电子激光对光子系统 II 进行结构功能研究。
IF 10.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1146/annurev-biophys-071723-102519
Junko Yano, Jan Kern, Vittal K Yachandra

The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.

光系统 II 中发生的水氧化化学反应的结构和机理一直是人们非常感兴趣的主题。X 射线自由电子激光的出现,使得稳定中间态的结构以及这些中间态之间的转变步骤得以确定,为这一领域带来了新的视角。随着光合作用水氧化反应的实时进行而收集到的室温结构为了解水氧化反应的结构变化和机理提供了重要的新见解。时间分辨测量还让我们了解了这一涉及多电子、多质子过程的反应是如何通过配体和氧发生复合物中的蛋白质残基的相互作用而得到促进的。这些结构还让我们了解了光系统 II 内部通道的动态变化,这些通道参与了底物水向催化中心和质子向主体的传输。
{"title":"Structure Function Studies of Photosystem II Using X-Ray Free Electron Lasers.","authors":"Junko Yano, Jan Kern, Vittal K Yachandra","doi":"10.1146/annurev-biophys-071723-102519","DOIUrl":"10.1146/annurev-biophys-071723-102519","url":null,"abstract":"<p><p>The structure and mechanism of the water-oxidation chemistry that occurs in photosystem II have been subjects of great interest. The advent of X-ray free electron lasers allowed the determination of structures of the stable intermediate states and of steps in the transitions between these intermediate states, bringing a new perspective to this field. The room-temperature structures collected as the photosynthetic water oxidation reaction proceeds in real time have provided important novel insights into the structural changes and the mechanism of the water oxidation reaction. The time-resolved measurements have also given us a view of how this reaction-which involves multielectron, multiproton processes-is facilitated by the interaction of the ligands and the protein residues in the oxygen-evolving complex. These structures have also provided a picture of the dynamics occurring in the channels within photosystem II that are involved in the transport of the substrate water to the catalytic center and protons to the bulk.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"53 1","pages":"343-365"},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321711/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function. 整体膜蛋白动态和功能的单分子成像。
IF 10.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1146/annurev-biophys-070323-024308
Arnab Modak, Zeliha Kilic, Kanokporn Chattrakun, Daniel S Terry, Ravi C Kalathur, Scott C Blanchard

Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.

整体膜蛋白(IMPs)在细胞生理学中发挥着核心作用,是大多数已知药物的靶点。单分子荧光和荧光共振能量转移(FRET)方法最近已成为研究 IMPs 结构-功能关系的重要工具。本综述侧重于利用单分子 FRET(smFRET)研究多表位 IMP 功能所需的实用基础,并概述了这一研究领域出现的技术和概念框架。在此背景下,我们强调了 smFRET 方法在揭示对 IMP 功能至关重要的瞬时构象状态方面的实用性,以及利用 smFRET 数据指导结构和药物作用机理研究方面的实用性。我们还确定了可能对推动该领域发展至关重要的前沿领域。
{"title":"Single-Molecule Imaging of Integral Membrane Protein Dynamics and Function.","authors":"Arnab Modak, Zeliha Kilic, Kanokporn Chattrakun, Daniel S Terry, Ravi C Kalathur, Scott C Blanchard","doi":"10.1146/annurev-biophys-070323-024308","DOIUrl":"https://doi.org/10.1146/annurev-biophys-070323-024308","url":null,"abstract":"<p><p>Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure-function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"53 1","pages":"427-453"},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization. 从核小体到分区:染色质组织的物理化学相互作用。
IF 10.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI: 10.1146/annurev-biophys-030822-032650
Shuming Liu, Advait Athreya, Zhuohan Lao, Bin Zhang

Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.

染色质组织通过调节遗传信息的获取,在细胞功能中发挥着至关重要的作用。然而,由于染色质折叠的复杂性和多尺度性,了解染色质折叠具有挑战性。在研究体外系统、揭示单个核小体及其阵列的结构以及阐明物理化学力在稳定这些结构中的作用方面,已经取得了重大进展。此外,体内染色质组织的表征也取得了显著进展,尤其是在全染色体水平,揭示了染色质环、拓扑关联域和核区等重要特征。然而,弥合体外和体内研究之间的差距仍然具有挑战性。体外和体内染色质构象的相似性以及核小体间相互作用与体内染色质折叠的相关性是争论的主题。本文回顾了在不同长度尺度上进行的实验和计算研究,强调了核小体之间内在相互作用的重要性及其在体内染色质折叠中的作用。生物物理学年刊》(Annual Review of Biophysics)第53卷的最终在线出版日期预计为2024年5月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization.","authors":"Shuming Liu, Advait Athreya, Zhuohan Lao, Bin Zhang","doi":"10.1146/annurev-biophys-030822-032650","DOIUrl":"10.1146/annurev-biophys-030822-032650","url":null,"abstract":"<p><p>Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":"221-245"},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR and Single-Molecule FRET Insights into Fast Protein Motions and Their Relation to Function. 核磁共振和单分子 FRET 透视快速蛋白质运动及其与功能的关系
IF 10.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-07-01 Epub Date: 2024-06-28 DOI: 10.1146/annurev-biophys-070323-022428
Paul Schanda, Gilad Haran

Proteins often undergo large-scale conformational transitions, in which secondary and tertiary structure elements (loops, helices, and domains) change their structures or their positions with respect to each other. Simple considerations suggest that such dynamics should be relatively fast, but the functional cycles of many proteins are often relatively slow. Sophisticated experimental methods are starting to tackle this dichotomy and shed light on the contribution of large-scale conformational dynamics to protein function. In this review, we focus on the contribution of single-molecule Förster resonance energy transfer and nuclear magnetic resonance (NMR) spectroscopies to the study of conformational dynamics. We briefly describe the state of the art in each of these techniques and then point out their similarities and differences, as well as the relative strengths and weaknesses of each. Several case studies, in which the connection between fast conformational dynamics and slower function has been demonstrated, are then introduced and discussed. These examples include both enzymes and large protein machines, some of which have been studied by both NMR and fluorescence spectroscopies.

蛋白质经常会发生大规模的构象转变,其中二级和三级结构元素(环、螺旋和结构域)会改变其结构或相互之间的位置。从简单的角度考虑,这种动态变化应该相对较快,但许多蛋白质的功能周期往往相对较慢。先进的实验方法正开始解决这一对立问题,并揭示大规模构象动力学对蛋白质功能的贡献。在这篇综述中,我们将重点介绍单分子佛斯特共振能量转移和核磁共振(NMR)光谱对构象动力学研究的贡献。我们简要介绍了每种技术的发展现状,然后指出了它们的异同以及各自的相对优缺点。然后,我们介绍并讨论了几个案例研究,这些案例研究证明了快速构象动力学与较慢功能之间的联系。这些例子包括酶和大型蛋白质机器,其中一些已通过核磁共振和荧光光谱进行了研究。生物物理学年刊》第 53 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"NMR and Single-Molecule FRET Insights into Fast Protein Motions and Their Relation to Function.","authors":"Paul Schanda, Gilad Haran","doi":"10.1146/annurev-biophys-070323-022428","DOIUrl":"10.1146/annurev-biophys-070323-022428","url":null,"abstract":"<p><p>Proteins often undergo large-scale conformational transitions, in which secondary and tertiary structure elements (loops, helices, and domains) change their structures or their positions with respect to each other. Simple considerations suggest that such dynamics should be relatively fast, but the functional cycles of many proteins are often relatively slow. Sophisticated experimental methods are starting to tackle this dichotomy and shed light on the contribution of large-scale conformational dynamics to protein function. In this review, we focus on the contribution of single-molecule Förster resonance energy transfer and nuclear magnetic resonance (NMR) spectroscopies to the study of conformational dynamics. We briefly describe the state of the art in each of these techniques and then point out their similarities and differences, as well as the relative strengths and weaknesses of each. Several case studies, in which the connection between fast conformational dynamics and slower function has been demonstrated, are then introduced and discussed. These examples include both enzymes and large protein machines, some of which have been studied by both NMR and fluorescence spectroscopies.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":" ","pages":"247-273"},"PeriodicalIF":10.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biophysical Modeling of Synaptic Plasticity 突触可塑性的生物物理建模
IF 12.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-02-21 DOI: 10.1146/annurev-biophys-072123-124954
Christopher T. Lee, Miriam Bell, Mayte Bonilla-Quintana, Padmini Rangamani
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
树突棘是一个小的球状区室,具有突触后部位的功能,并经历着激烈的生物化学和生物物理活动。人们对突触可塑性所涉及的无数信号通路的作用进行了深入研究。最近大量的定量实验数据使得与突触可塑性相关的事件可以进行定量生物物理建模。脊柱也是引人入胜的生物物理计算单元,因为脊柱的几何形状、信号转导和力学在一个复杂的反馈回路中共同作用,以调整突触可塑性。从这个意义上说,细胞运动建模的思路可以启发我们开发多尺度方法来预测突触可塑性建模。在这篇文章中,我们回顾了突触后可塑性的关键步骤,特别关注脊柱几何形状对信号传导、细胞骨架重排和膜力学的影响。我们总结了主要的实验观察结果,并强调了理论和计算如何帮助我们理解这些复杂的过程。《生物物理学年刊》(Annual Review of Biophysics)第 53 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"Biophysical Modeling of Synaptic Plasticity","authors":"Christopher T. Lee, Miriam Bell, Mayte Bonilla-Quintana, Padmini Rangamani","doi":"10.1146/annurev-biophys-072123-124954","DOIUrl":"https://doi.org/10.1146/annurev-biophys-072123-124954","url":null,"abstract":"Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"259 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139923425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial Electrophysiology 细菌电生理学
IF 12.4 1区 生物学 Q1 BIOPHYSICS Pub Date : 2024-02-21 DOI: 10.1146/annurev-biophys-030822-032215
Wei-Chang Lo, Ekaterina Krasnopeeva, Teuta Pilizota
Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
细菌的离子通量涉及能量的产生、运输和运动。因此,细菌电生理学对细菌的生命周期至关重要,但却经常被忽视,因此,人们对细菌电生理学的了解基本上是空白。可以说,造成这种情况的两个主要原因是:在具有包含细胞壁的细胞包膜的小细胞中测量相关变量非常复杂;在单细胞生物体中,相关变量以一种非复杂的方式交织在一起。为了帮助细菌电生理学研究站稳脚跟,在本综述中,我们将回到基本原理。我们首先介绍细菌膜电位的生物物理学,然后介绍主要为研究神经元和真核线粒体而开发的方法和模型。我们将讨论它们对细菌细胞的适用性。最后,我们将细菌膜电位与其他相关(电)生理变量联系起来,并总结了可用于测量和影响细菌电生理学的方法。《生物物理学年刊》第 53 卷的最终在线出版日期预计为 2024 年 5 月。修订后的预计日期请参见 http://www.annualreviews.org/page/journal/pubdates。
{"title":"Bacterial Electrophysiology","authors":"Wei-Chang Lo, Ekaterina Krasnopeeva, Teuta Pilizota","doi":"10.1146/annurev-biophys-030822-032215","DOIUrl":"https://doi.org/10.1146/annurev-biophys-030822-032215","url":null,"abstract":"Bacterial ion fluxes are involved in the generation of energy, transport, and motility. As such, bacterial electrophysiology is fundamentally important for the bacterial life cycle, but it is often neglected and consequently, by and large, not understood. Arguably, the two main reasons for this are the complexity of measuring relevant variables in small cells with a cell envelope that contains the cell wall and the fact that, in a unicellular organism, relevant variables become intertwined in a nontrivial manner. To help give bacterial electrophysiology studies a firm footing, in this review, we go back to basics. We look first at the biophysics of bacterial membrane potential, and then at the approaches and models developed mostly for the study of neurons and eukaryotic mitochondria. We discuss their applicability to bacterial cells. Finally, we connect bacterial membrane potential with other relevant (electro)physiological variables and summarize methods that can be used to both measure and influence bacterial electrophysiology.Expected final online publication date for the Annual Review of Biophysics, Volume 53 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"690 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139928014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annual Review of Biophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1