首页 > 最新文献

Annals of Combinatorics最新文献

英文 中文
Factorisation of the Complete Bipartite Graph into Spanning Semiregular Factors 完全二部图的分解成生成半正则因子
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2023-01-29 DOI: 10.1007/s00026-023-00635-5
Mahdieh Hasheminezhad, Brendan D. McKay

We enumerate factorisations of the complete bipartite graph into spanning semiregular graphs in several cases, including when the degrees of all the factors except one or two are small. The resulting asymptotic behavior is seen to generalize the number of semiregular graphs in an elegant way. This leads us to conjecture a general formula when the number of factors is vanishing compared to the number of vertices. As a corollary, we find the average number of ways to partition the edges of a random semiregular bipartite graph into spanning semiregular subgraphs in several cases. Our proof of one case uses a switching argument to find the probability that a set of sufficiently sparse semiregular bipartite graphs are edge-disjoint when randomly labeled.

在几种情况下,我们将完全二分图的因子分解列举为生成半正则图,包括当除一个或两个因子外的所有因子的度都很小时。由此得到的渐近行为被认为以一种优雅的方式推广了半正则图的数量。这使我们推测出一个一般公式,当因子的数量与顶点的数量相比正在消失时。作为推论,我们在几种情况下找到了将随机半正则二分图的边划分为生成半正则子图的平均方法数。我们对一种情况的证明使用切换自变量来寻找一组足够稀疏的半正则二分图在随机标记时边缘不相交的概率。
{"title":"Factorisation of the Complete Bipartite Graph into Spanning Semiregular Factors","authors":"Mahdieh Hasheminezhad,&nbsp;Brendan D. McKay","doi":"10.1007/s00026-023-00635-5","DOIUrl":"10.1007/s00026-023-00635-5","url":null,"abstract":"<div><p>We enumerate factorisations of the complete bipartite graph into spanning semiregular graphs in several cases, including when the degrees of all the factors except one or two are small. The resulting asymptotic behavior is seen to generalize the number of semiregular graphs in an elegant way. This leads us to conjecture a general formula when the number of factors is vanishing compared to the number of vertices. As a corollary, we find the average number of ways to partition the edges of a random semiregular bipartite graph into spanning semiregular subgraphs in several cases. Our proof of one case uses a switching argument to find the probability that a set of sufficiently sparse semiregular bipartite graphs are edge-disjoint when randomly labeled.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 3","pages":"599 - 613"},"PeriodicalIF":0.5,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46975540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremal (varvec{{ p, q }})-Animals 四肢(varvec{p,q})-动物
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2023-01-06 DOI: 10.1007/s00026-022-00631-1
Greg Malen, Érika Roldán, Rosemberg Toalá-Enríquez

An animal is a planar shape formed by attaching congruent regular polygons along their edges. Usually, these polygons are a finite subset of tiles of a regular planar tessellation. These tessellations can be parameterized using the Schläfli symbol ({p,q}), where p denotes the number of sides of the regular polygon forming the tessellation and q is the number of edges or tiles meeting at each vertex. If ((p-2)(q-2)> 4), (=4), or (<4), then the tessellation corresponds to the geometry of the hyperbolic plane, the Euclidean plane, or the sphere, respectively. In 1976, Harary and Harborth studied animals defined on regular tessellations of the Euclidean plane, finding extremal values for their vertices, edges, and tiles, when any one of these parameters is fixed. They named animals attaining these extremal values as extremal animals. Here, we study hyperbolic extremal animals. For each ({p,q}) corresponding to a hyperbolic tessellation, we exhibit a sequence of spiral animals and prove that they attain the minimum numbers of edges and vertices within the class of animals with n tiles. We also give the first results on enumeration of extremal hyperbolic animals by finding special sequences of extremal animals that are unique extremal animals, in the sense that any animal with the same number of tiles which is distinct up to isometries cannot be extremal.

动物是一种平面形状,通过沿其边缘连接全等的正多边形而形成。通常,这些多边形是规则平面镶嵌的瓦片的有限子集。这些镶嵌可以使用Schläfli符号({p,q})进行参数化,其中p表示形成镶嵌的正多边形的边数,q是在每个顶点相交的边或瓦片数。如果((p-2)(q-2)>;4)、(=4)或(<;4),则镶嵌分别对应于双曲平面、欧几里得平面或球体的几何图形。1976年,Harary和Harborth研究了在欧几里得平面的规则镶嵌上定义的动物,当这些参数中的任何一个固定时,为它们的顶点、边和瓦片找到极值。他们将达到这些极值的动物命名为极值动物。在这里,我们研究双曲型极端动物。对于对应于双曲镶嵌的每个({p,q}),我们展示了一个螺旋动物序列,并证明它们在具有n个瓦片的动物类中获得了最小数量的边和顶点。我们还通过寻找极端动物的特殊序列,给出了极端双曲动物计数的第一个结果,这些极端动物是独特的极端动物,从这个意义上说,任何具有相同数量的瓦片(直到等距为止都是不同的)的动物都不可能是极端的。
{"title":"Extremal (varvec{{ p, q }})-Animals","authors":"Greg Malen,&nbsp;Érika Roldán,&nbsp;Rosemberg Toalá-Enríquez","doi":"10.1007/s00026-022-00631-1","DOIUrl":"10.1007/s00026-022-00631-1","url":null,"abstract":"<div><p>An animal is a planar shape formed by attaching congruent regular polygons along their edges. Usually, these polygons are a finite subset of tiles of a regular planar tessellation. These tessellations can be parameterized using the Schläfli symbol <span>({p,q})</span>, where <i>p</i> denotes the number of sides of the regular polygon forming the tessellation and <i>q</i> is the number of edges or tiles meeting at each vertex. If <span>((p-2)(q-2)&gt; 4)</span>, <span>(=4)</span>, or <span>(&lt;4)</span>, then the tessellation corresponds to the geometry of the hyperbolic plane, the Euclidean plane, or the sphere, respectively. In 1976, Harary and Harborth studied animals defined on regular tessellations of the Euclidean plane, finding extremal values for their vertices, edges, and tiles, when any one of these parameters is fixed. They named animals attaining these extremal values as <i>extremal animals</i>. Here, we study hyperbolic extremal animals. For each <span>({p,q})</span> corresponding to a hyperbolic tessellation, we exhibit a sequence of spiral animals and prove that they attain the minimum numbers of edges and vertices within the class of animals with <i>n</i> tiles. We also give the first results on enumeration of extremal hyperbolic animals by finding special sequences of extremal animals that are <i>unique</i> extremal animals, in the sense that any animal with the same number of tiles which is distinct up to isometries cannot be extremal.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 1","pages":"169 - 209"},"PeriodicalIF":0.5,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00631-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50455893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lagrangian-Perfect Hypergraphs 拉格朗日完全超图
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2023-01-06 DOI: 10.1007/s00026-022-00634-y
Zilong Yan, Yuejian Peng
<div><p>Hypergraph Lagrangian function has been a helpful tool in several celebrated results in extremal combinatorics. Let <i>G</i> be an <i>r</i>-uniform graph on [<i>n</i>] and let <span>({textbf{x}}=(x_1,ldots ,x_n) in [0,infty )^n.)</span> The graph Lagrangian function is defined to be <span>(lambda (G,{textbf{x}})=sum _{e in E(G)}prod _{iin e}x_{i}.)</span> The graph Lagrangian is defined as <span>(lambda (G)=max {lambda (G, {textbf{x}}): {textbf{x}} in Delta },)</span> where <span>(Delta ={{textbf{x}}=(x_1,x_2,ldots ,x_n) in [0, 1]^{n}: x_1+x_2+dots +x_n =1 }.)</span> The Lagrangian density <span>(pi _{lambda }(F))</span> of an <i>r</i>-graph <i>F</i> is defined to be <span>(pi _{lambda }(F)=sup {r! lambda (G): G text { does not contain }F }.)</span> Sidorenko (Combinatorica 9:207–215, 1989) showed that the Lagrangian density of an <i>r</i>-uniform hypergraph <i>F</i> is the same as the Turán density of the extension of <i>F</i>. Therefore, determining the Lagrangian density of a hypergraph will add a result to the very few known results on Turán densities of hypergraphs. For an <i>r</i>-uniform graph <i>H</i> with <i>t</i> vertices, <span>(pi _{lambda }(H)ge r!lambda {(K_{t-1}^r)})</span> since <span>(K_{t-1}^r)</span> (the complete <i>r</i>-uniform graph with <span>(t-1)</span> vertices) does not contain a copy of <i>H</i>. We say that an <i>r</i>-uniform hypergraph <i>H</i> with <i>t</i> vertices is <span>(lambda )</span>-perfect if the equality <span>(pi _{lambda }(H)= r!lambda {(K_{t-1}^r)})</span> holds. A fundamental theorem of Motzkin and Straus implies that all 2-uniform graphs are <span>(lambda )</span>-perfect. It is interesting to understand the <span>(lambda )</span>-perfect property for <span>(rge 3.)</span> Our first result is to show that the disjoint union of a <span>(lambda )</span>-perfect 3-graph and <span>(S_{2,t}={123,124,125,126,ldots ,12(t+2)})</span> is <span>(lambda )</span>-perfect, this result implies several previous results: Taking <i>H</i> to be the 3-graph spanned by one edge and <span>(t=1,)</span> we obtain the result by Hefetz and Keevash (J Comb Theory Ser A 120:2020–2038, 2013) that a 3-uniform matching of size 2 is <span>(lambda )</span>-perfect. Doing it repeatedly, we obtain the result in Jiang et al. (Eur J Comb 73:20–36, 2018) that any 3-uniform matching is <span>(lambda )</span>-perfect. Taking <i>H</i> to be the 3-uniform linear path of length 2 or 3 and <span>(t=1)</span> repeatedly, we obtain the results in Hu et al. (J Comb Des 28:207–223, 2020). Earlier results indicate that <span>(K_4^{3-}={123, 124, 134})</span> and <span>(F_5={123, 124, 345})</span> are not <span>(lambda )</span>-perfect, we show that the disjoint union of <span>(K_4^{3-})</span> (or <span>(F_5)</span>) and <span>(S_{2,t})</span> are <span>(lambda )</span>-perfect. Furthermore, we show the disjoint union of a 3-uniform hypergraph <i>H</i> and <span>(S_{2,t})</span> is <span>(lambda )</span>-perfect if <i>t</i> is large. We
超图拉格朗日函数在极值组合学的几个著名结果中是一个有用的工具。设G是[n]上的r-一致图,并且设({textbf{x}}=(x_1,ldots,x_n) in[0,infty)^n。)图拉格朗日函数被定义为(lambda(G,{txtbf{s})=sum_{ein e(G)}prod_{i in e}x_{i}。)},)其中(Delta={textbf{x}}=(x_1,x_2,ldots,x_n)在[0,1]^{n}中:x_1+x_2+dots+x_n=1)r图F的拉格朗日密度(pi_{lambda}(F))被定义为(pi-{ lambda}(F)=sup{r!lambda(G):Gtext{不包含}F}。)Sidorenko(Combinatorica 9:207–2151989)证明了r-一致超图F的拉格朗日密度与F的扩张的Turán密度相同。因此,确定超图的拉格朗日密度将为关于超图的Turón密度的极少数已知结果增加一个结果。对于具有t个顶点的r-一致图H!λ{(K_{t-1}^r)}),因为(K_!λ{(K_{t-1}^r)})成立。Motzkin和Straus的一个基本定理暗示了所有2-一致图都是(λ)-完美图。理解(rge3)的(lambda)-完美性质是很有趣的。我们的第一个结果是证明(λ)-完全3-图和(S_{2,t}={123124125126,ldots,12(t+2)})的不相交并集是,这个结果暗示了以前的几个结果:将H设为由一条边跨越的3-图,并且(t=1,)我们得到了Hefetz和Keevash的结果(J Comb Theory Ser A 120:2020–20382013),大小为2的3-一致匹配是(λ)-完美的。重复进行,我们在Jiang等人(Eur J Comb 73:20–361018)中得到了任何3-一致匹配都是(lambda)-完美的结果。将H设为长度为2或3的3-均匀线性路径,并重复(t=1),我们在Hu等人中得到了结果。(J Comb-Des 28:207–2232020)。早期的结果表明,(K_4^{3-}=(123124134)和(F_5=(123123345))不是(λ)-完美的,我们证明了(K_4^{3-})(或(F_5))和(S_{2,t})的不相交并集是(λ)完美的。此外,我们还证明了3-一致超图H与(S_{2,t})的不相交并集是(λ)-完美的,如果t很大。我们还给出了四个3-一致超图族的无理拉格朗日密度。
{"title":"Lagrangian-Perfect Hypergraphs","authors":"Zilong Yan,&nbsp;Yuejian Peng","doi":"10.1007/s00026-022-00634-y","DOIUrl":"10.1007/s00026-022-00634-y","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Hypergraph Lagrangian function has been a helpful tool in several celebrated results in extremal combinatorics. Let &lt;i&gt;G&lt;/i&gt; be an &lt;i&gt;r&lt;/i&gt;-uniform graph on [&lt;i&gt;n&lt;/i&gt;] and let &lt;span&gt;({textbf{x}}=(x_1,ldots ,x_n) in [0,infty )^n.)&lt;/span&gt; The graph Lagrangian function is defined to be &lt;span&gt;(lambda (G,{textbf{x}})=sum _{e in E(G)}prod _{iin e}x_{i}.)&lt;/span&gt; The graph Lagrangian is defined as &lt;span&gt;(lambda (G)=max {lambda (G, {textbf{x}}): {textbf{x}} in Delta },)&lt;/span&gt; where &lt;span&gt;(Delta ={{textbf{x}}=(x_1,x_2,ldots ,x_n) in [0, 1]^{n}: x_1+x_2+dots +x_n =1 }.)&lt;/span&gt; The Lagrangian density &lt;span&gt;(pi _{lambda }(F))&lt;/span&gt; of an &lt;i&gt;r&lt;/i&gt;-graph &lt;i&gt;F&lt;/i&gt; is defined to be &lt;span&gt;(pi _{lambda }(F)=sup {r! lambda (G): G text { does not contain }F }.)&lt;/span&gt; Sidorenko (Combinatorica 9:207–215, 1989) showed that the Lagrangian density of an &lt;i&gt;r&lt;/i&gt;-uniform hypergraph &lt;i&gt;F&lt;/i&gt; is the same as the Turán density of the extension of &lt;i&gt;F&lt;/i&gt;. Therefore, determining the Lagrangian density of a hypergraph will add a result to the very few known results on Turán densities of hypergraphs. For an &lt;i&gt;r&lt;/i&gt;-uniform graph &lt;i&gt;H&lt;/i&gt; with &lt;i&gt;t&lt;/i&gt; vertices, &lt;span&gt;(pi _{lambda }(H)ge r!lambda {(K_{t-1}^r)})&lt;/span&gt; since &lt;span&gt;(K_{t-1}^r)&lt;/span&gt; (the complete &lt;i&gt;r&lt;/i&gt;-uniform graph with &lt;span&gt;(t-1)&lt;/span&gt; vertices) does not contain a copy of &lt;i&gt;H&lt;/i&gt;. We say that an &lt;i&gt;r&lt;/i&gt;-uniform hypergraph &lt;i&gt;H&lt;/i&gt; with &lt;i&gt;t&lt;/i&gt; vertices is &lt;span&gt;(lambda )&lt;/span&gt;-perfect if the equality &lt;span&gt;(pi _{lambda }(H)= r!lambda {(K_{t-1}^r)})&lt;/span&gt; holds. A fundamental theorem of Motzkin and Straus implies that all 2-uniform graphs are &lt;span&gt;(lambda )&lt;/span&gt;-perfect. It is interesting to understand the &lt;span&gt;(lambda )&lt;/span&gt;-perfect property for &lt;span&gt;(rge 3.)&lt;/span&gt; Our first result is to show that the disjoint union of a &lt;span&gt;(lambda )&lt;/span&gt;-perfect 3-graph and &lt;span&gt;(S_{2,t}={123,124,125,126,ldots ,12(t+2)})&lt;/span&gt; is &lt;span&gt;(lambda )&lt;/span&gt;-perfect, this result implies several previous results: Taking &lt;i&gt;H&lt;/i&gt; to be the 3-graph spanned by one edge and &lt;span&gt;(t=1,)&lt;/span&gt; we obtain the result by Hefetz and Keevash (J Comb Theory Ser A 120:2020–2038, 2013) that a 3-uniform matching of size 2 is &lt;span&gt;(lambda )&lt;/span&gt;-perfect. Doing it repeatedly, we obtain the result in Jiang et al. (Eur J Comb 73:20–36, 2018) that any 3-uniform matching is &lt;span&gt;(lambda )&lt;/span&gt;-perfect. Taking &lt;i&gt;H&lt;/i&gt; to be the 3-uniform linear path of length 2 or 3 and &lt;span&gt;(t=1)&lt;/span&gt; repeatedly, we obtain the results in Hu et al. (J Comb Des 28:207–223, 2020). Earlier results indicate that &lt;span&gt;(K_4^{3-}={123, 124, 134})&lt;/span&gt; and &lt;span&gt;(F_5={123, 124, 345})&lt;/span&gt; are not &lt;span&gt;(lambda )&lt;/span&gt;-perfect, we show that the disjoint union of &lt;span&gt;(K_4^{3-})&lt;/span&gt; (or &lt;span&gt;(F_5)&lt;/span&gt;) and &lt;span&gt;(S_{2,t})&lt;/span&gt; are &lt;span&gt;(lambda )&lt;/span&gt;-perfect. Furthermore, we show the disjoint union of a 3-uniform hypergraph &lt;i&gt;H&lt;/i&gt; and &lt;span&gt;(S_{2,t})&lt;/span&gt; is &lt;span&gt;(lambda )&lt;/span&gt;-perfect if &lt;i&gt;t&lt;/i&gt; is large. We","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 4","pages":"957 - 978"},"PeriodicalIF":0.5,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44578496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Extremal $$varvec{{ p, q }}$$ { p , q } -Animals 极值$$varvec{{ p,q}}${p,q}-动物
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2023-01-06 DOI: 10.1007/s00026-022-00631-1
Greg Malen, Érika Roldán, Rosemberg Toalá-Enríquez
{"title":"Extremal \u0000 \u0000 \u0000 \u0000 $$varvec{{ p, q }}$$\u0000 \u0000 \u0000 {\u0000 p\u0000 ,\u0000 q\u0000 }\u0000 \u0000 \u0000 -Animals","authors":"Greg Malen, Érika Roldán, Rosemberg Toalá-Enríquez","doi":"10.1007/s00026-022-00631-1","DOIUrl":"https://doi.org/10.1007/s00026-022-00631-1","url":null,"abstract":"","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 1","pages":"169-209"},"PeriodicalIF":0.5,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47733259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Antipodes of Immaculate Functions 关于无玷函数的对映
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2022-12-30 DOI: 10.1007/s00026-022-00632-0
John Maxwell Campbell

The immaculate basis of the Hopf algebra (textsf {NSym}) of noncommutative symmetric functions is a Schur-like basis of (textsf {NSym}) that has been applied in many areas in the field of algebraic combinatorics. The problem of determining a cancellation-free formula for the antipode of (textsf {NSym}) evaluated at an arbitrary immaculate function ( {mathfrak {S}}_{alpha } ) remains open, letting (alpha ) denote an integer composition. However, for the cases whereby we let (alpha ) be a hook or consist of at most two rows, Benedetti and Sagan (J Combin Theory Ser A 148:275–315, 2017) have determined cancellation-free formulas for expanding (S({mathfrak {S}}_{alpha })) in the ({mathfrak {S}})-basis. According to a Jacobi–Trudi-like formula for expanding immaculate functions in the ribbon basis that we had previously proved bijectively (Discrete Math 340(7):1716–1726, 2017), by applying the antipode S of (textsf {NSym}) to both sides of this formula, we obtain a cancellation-free formula for expressing (S({mathfrak {S}}_{(m^{n})})) in the R-basis, for an arbitrary rectangle ((m^{n})). We explore the idea of using this R-expansion, together with sign-reversing involutions, to determine combinatorial interpretations of the ({mathfrak {S}})-coefficients of antipodes of rectangular immaculate functions. We then determine cancellation-free formulas for antipodes of immaculate functions much more generally, using a Jacobi–Trudi-like formula recently introduced by Allen and Mason that generalizes Campbell’s formulas for expanding ({mathfrak {S}})-elements into the R-basis, and we further explore how new families of composition tableaux may be used to obtain combinatorial interpretations for expanding (S({mathfrak {S}}_{alpha })) into the ({mathfrak {S}})-basis.

非对易对称函数的Hopf代数(textsf{NSym})的完美基是在代数组合学领域的许多领域中应用的类似Schur基。在任意完美函数({mathfrak{S}}_{alpha})上计算的(textsf{NSym})的对极的无消去公式的确定问题仍然存在,让(alpha)表示整数组成。然而,对于我们让(alpha)是一个钩子或最多由两行组成的情况,Benedetti和Sagan(J Combin Theory Ser a 148:275–3152017)已经确定了在({mathfrak{S}})-基上展开(S({ mathfrak{S}}_{alpha}))的无消去公式。根据我们之前双射证明的在带状基上展开无完美函数的Jacobi–Trudi类公式(离散数学340(7):1716–17262017),通过将(textsf{NSym})的反极S应用于该公式的两侧,我们得到了在R基上表示(S({mathfrak{S}}_{(m^{n})})的无消去公式,对于任意矩形((m^{n}))。我们探索了使用这种R-展开和符号反转对合来确定矩形无瑕函数对极的({mathfrak{S}})-系数的组合解释的想法。然后,我们使用Allen和Mason最近引入的Jacobi–Trudi类公式,更普遍地确定了无完美函数对极的无消去公式,该公式推广了Campbell将({mathfrak{s}})-元素扩展到R基的公式,并且我们进一步探索了如何使用新的组合表族来获得将(S({mathfrak{S}}_。
{"title":"On Antipodes of Immaculate Functions","authors":"John Maxwell Campbell","doi":"10.1007/s00026-022-00632-0","DOIUrl":"10.1007/s00026-022-00632-0","url":null,"abstract":"<div><p>The immaculate basis of the Hopf algebra <span>(textsf {NSym})</span> of noncommutative symmetric functions is a Schur-like basis of <span>(textsf {NSym})</span> that has been applied in many areas in the field of algebraic combinatorics. The problem of determining a cancellation-free formula for the antipode of <span>(textsf {NSym})</span> evaluated at an arbitrary immaculate function <span>( {mathfrak {S}}_{alpha } )</span> remains open, letting <span>(alpha )</span> denote an integer composition. However, for the cases whereby we let <span>(alpha )</span> be a hook or consist of at most two rows, Benedetti and Sagan (J Combin Theory Ser A 148:275–315, 2017) have determined cancellation-free formulas for expanding <span>(S({mathfrak {S}}_{alpha }))</span> in the <span>({mathfrak {S}})</span>-basis. According to a Jacobi–Trudi-like formula for expanding immaculate functions in the ribbon basis that we had previously proved bijectively (Discrete Math 340(7):1716–1726, 2017), by applying the antipode <i>S</i> of <span>(textsf {NSym})</span> to both sides of this formula, we obtain a cancellation-free formula for expressing <span>(S({mathfrak {S}}_{(m^{n})}))</span> in the <i>R</i>-basis, for an arbitrary rectangle <span>((m^{n}))</span>. We explore the idea of using this <i>R</i>-expansion, together with sign-reversing involutions, to determine combinatorial interpretations of the <span>({mathfrak {S}})</span>-coefficients of antipodes of rectangular immaculate functions. We then determine cancellation-free formulas for antipodes of immaculate functions much more generally, using a Jacobi–Trudi-like formula recently introduced by Allen and Mason that generalizes Campbell’s formulas for expanding <span>({mathfrak {S}})</span>-elements into the <i>R</i>-basis, and we further explore how new families of composition tableaux may be used to obtain combinatorial interpretations for expanding <span>(S({mathfrak {S}}_{alpha }))</span> into the <span>({mathfrak {S}})</span>-basis.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 3","pages":"579 - 598"},"PeriodicalIF":0.5,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43111702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Boolean Complexes of Involutions 对合的布尔复形
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2022-12-28 DOI: 10.1007/s00026-022-00629-9
Axel Hultman, Vincent Umutabazi

Let (WS) be a Coxeter system. We introduce the boolean complex of involutions of W which is an analogue of the boolean complex of W studied by Ragnarsson and Tenner. By applying discrete Morse theory, we determine the homotopy type of the boolean complex of involutions for a large class of (WS), including all finite Coxeter groups, finding that the homotopy type is that of a wedge of spheres of dimension (vert Svert -1). In addition, we find simple recurrence formulas for the number of spheres in the wedge.

设(W,S)是一个Coxeter系统。我们引入了W的对合布尔复形,它是Ragnarsson和Tenner研究的W的布尔复形的一个类似物。通过应用离散Morse理论,我们确定了一大类(W,S)(包括所有有限Coxeter群)对合布尔复形的同伦型,发现该同伦型是一个维数为(vert Svert-1)的球楔的同伦类型。此外,我们还找到了楔中球体数量的简单递推公式。
{"title":"Boolean Complexes of Involutions","authors":"Axel Hultman,&nbsp;Vincent Umutabazi","doi":"10.1007/s00026-022-00629-9","DOIUrl":"10.1007/s00026-022-00629-9","url":null,"abstract":"<div><p>Let (<i>W</i>, <i>S</i>) be a Coxeter system. We introduce the boolean complex of involutions of <i>W</i> which is an analogue of the boolean complex of <i>W</i> studied by Ragnarsson and Tenner. By applying discrete Morse theory, we determine the homotopy type of the boolean complex of involutions for a large class of (<i>W</i>, <i>S</i>), including all finite Coxeter groups, finding that the homotopy type is that of a wedge of spheres of dimension <span>(vert Svert -1)</span>. In addition, we find simple recurrence formulas for the number of spheres in the wedge.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 1","pages":"129 - 147"},"PeriodicalIF":0.5,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00629-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41326138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic Coefficients of Goulden–Rattan Character Polynomials 金藤特征多项式的二次系数
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2022-12-17 DOI: 10.1007/s00026-022-00611-5
Mikołaj Marciniak

Goulden–Rattan polynomials give the exact value of the subdominant part of the normalized characters of the symmetric groups in terms of certain quantities ((C_i)) which describe the macroscopic shape of the Young diagram. The Goulden–Rattan positivity conjecture states that the coefficients of these polynomials are positive rational numbers with small denominators. We prove a special case of this conjecture for the coefficient of the quadratic term (C_2^2) by applying certain bijections involving maps (i.e., graphs drawn on surfaces).

Goulden–Rattan多项式根据描述Young图宏观形状的某些量((C_i))给出了对称群的归一化特征的子主导部分的精确值。Goulden–Rattan正猜想指出,这些多项式的系数是具有小分母的正有理数。通过应用某些涉及映射的双射(即在曲面上绘制的图),我们证明了二次项(C_2^2)的系数的这一猜想的一个特例。
{"title":"Quadratic Coefficients of Goulden–Rattan Character Polynomials","authors":"Mikołaj Marciniak","doi":"10.1007/s00026-022-00611-5","DOIUrl":"10.1007/s00026-022-00611-5","url":null,"abstract":"<div><p>Goulden–Rattan polynomials give the exact value of the subdominant part of the normalized characters of the symmetric groups in terms of certain quantities <span>((C_i))</span> which describe the macroscopic shape of the Young diagram. The Goulden–Rattan positivity conjecture states that the coefficients of these polynomials are positive rational numbers with small denominators. We prove a special case of this conjecture for the coefficient of the quadratic term <span>(C_2^2)</span> by applying certain bijections involving maps (i.e., graphs drawn on surfaces).</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 1","pages":"109 - 128"},"PeriodicalIF":0.5,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00611-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47729766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Equivariant Euler Characteristics of Subgroup Complexes of Symmetric Groups 对称群子群配合物的等变Euler特性
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2022-12-17 DOI: 10.1007/s00026-022-00630-2
Zhipeng Duan

Equivariant Euler characteristics are important numerical homotopy invariants for objects with group actions. They have deep connections with many other areas like modular representation theory and chromatic homotopy theory. They are also computable, especially for combinatorial objects like partition posets, buildings associated with finite groups of Lie types, etc. In this article, we make new contributions to concrete computations by determining the equivariant Euler characteristics for all subgroup complexes of symmetric groups (varSigma _n) when n is prime, twice a prime, or a power of two and several variants. There are two basic approaches to calculating equivariant Euler characteristics. One is based on a recursion formula and generating functions, and another on analyzing the fixed points of abelian subgroups. In this article, we adopt the second approach since the fixed points of abelian subgroups are simple in this case.

等变Euler特征是具有群作用的对象的重要数值同伦不变量。它们与许多其他领域有着深刻的联系,如模表示理论和色同伦论。它们也是可计算的,特别是对于组合对象,如划分偏序集、与李型有限群相关的建筑物等。在本文中,我们通过确定对称群(varSigma_n)的所有子群复数的等变欧拉特征,对具体计算做出了新的贡献,或者两个和几个变体的幂。计算等变欧拉特性有两种基本方法。一个是基于递归公式和生成函数,另一个是分析阿贝尔子群的不动点。在本文中,我们采用了第二种方法,因为阿贝尔子群的不动点在这种情况下是简单的。
{"title":"Equivariant Euler Characteristics of Subgroup Complexes of Symmetric Groups","authors":"Zhipeng Duan","doi":"10.1007/s00026-022-00630-2","DOIUrl":"10.1007/s00026-022-00630-2","url":null,"abstract":"<div><p>Equivariant Euler characteristics are important numerical homotopy invariants for objects with group actions. They have deep connections with many other areas like modular representation theory and chromatic homotopy theory. They are also computable, especially for combinatorial objects like partition posets, buildings associated with finite groups of Lie types, etc. In this article, we make new contributions to concrete computations by determining the equivariant Euler characteristics for all subgroup complexes of symmetric groups <span>(varSigma _n)</span> when n is prime, twice a prime, or a power of two and several variants. There are two basic approaches to calculating equivariant Euler characteristics. One is based on a recursion formula and generating functions, and another on analyzing the fixed points of abelian subgroups. In this article, we adopt the second approach since the fixed points of abelian subgroups are simple in this case.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 1","pages":"67 - 85"},"PeriodicalIF":0.5,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48647046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining Binary Phylogenetic Trees Using Parsimony 用简约法定义二元系统发育树
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2022-12-17 DOI: 10.1007/s00026-022-00627-x
Mareike Fischer

Phylogenetic (i.e., leaf-labeled) trees play a fundamental role in evolutionary research. A typical problem is to reconstruct such trees from data like DNA alignments (whose columns are often referred to as characters), and a simple optimization criterion for such reconstructions is maximum parsimony. It is generally assumed that this criterion works well for data in which state changes are rare. In the present manuscript, we prove that each binary phylogenetic tree T with (nge 20 k) leaves is uniquely defined by the set (A_k(T)), which consists of all characters with parsimony score k on T. This can be considered as a promising first step toward showing that maximum parsimony as a tree reconstruction criterion is justified when the number of changes in the data is relatively small.

系统发育(即叶标)树在进化研究中发挥着重要作用。一个典型的问题是从DNA比对(其列通常被称为特征)等数据重建这样的树,而这种重建的一个简单优化标准是最大简约性。通常认为,该标准适用于状态变化很少的数据。在本文中,我们证明了每一个叶数为20的二元系统发育树T都是由集(A_k(T))唯一定义的,该集由T上简约分数为k的所有特征组成。
{"title":"Defining Binary Phylogenetic Trees Using Parsimony","authors":"Mareike Fischer","doi":"10.1007/s00026-022-00627-x","DOIUrl":"10.1007/s00026-022-00627-x","url":null,"abstract":"<div><p>Phylogenetic (i.e., leaf-labeled) trees play a fundamental role in evolutionary research. A typical problem is to reconstruct such trees from data like DNA alignments (whose columns are often referred to as characters), and a simple optimization criterion for such reconstructions is maximum parsimony. It is generally assumed that this criterion works well for data in which state changes are rare. In the present manuscript, we prove that each binary phylogenetic tree <i>T</i> with <span>(nge 20 k)</span> leaves is uniquely defined by the set <span>(A_k(T))</span>, which consists of all characters with parsimony score <i>k</i> on <i>T</i>. This can be considered as a promising first step toward showing that maximum parsimony as a tree reconstruction criterion is justified when the number of changes in the data is relatively small.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 3","pages":"457 - 467"},"PeriodicalIF":0.5,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00627-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43287985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Merino–Welsh Conjecture for Split Matroids 分裂拟阵的Merino–Welsh猜想
IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED Pub Date : 2022-12-17 DOI: 10.1007/s00026-022-00628-w
Luis Ferroni, Benjamin Schröter

In 1999, Merino and Welsh conjectured that evaluations of the Tutte polynomial of a graph satisfy an inequality. In this short article, we show that the conjecture generalized to matroids holds for the large class of all split matroids by exploiting the structure of their lattice of cyclic flats. This class of matroids strictly contains all paving and copaving matroids.

1999年,Merino和Welsh推测图的Tutte多项式的求值满足不等式。在这篇短文中,我们通过利用循环平坦格的结构,证明了推广到拟阵的猜想对于一大类全分裂拟阵是成立的。这类拟阵严格包含所有铺砌和共铺拟阵。
{"title":"The Merino–Welsh Conjecture for Split Matroids","authors":"Luis Ferroni,&nbsp;Benjamin Schröter","doi":"10.1007/s00026-022-00628-w","DOIUrl":"10.1007/s00026-022-00628-w","url":null,"abstract":"<div><p>In 1999, Merino and Welsh conjectured that evaluations of the Tutte polynomial of a graph satisfy an inequality. In this short article, we show that the conjecture generalized to matroids holds for the large class of all split matroids by exploiting the structure of their lattice of cyclic flats. This class of matroids strictly contains all paving and copaving matroids.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 3","pages":"737 - 748"},"PeriodicalIF":0.5,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00628-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46472179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Annals of Combinatorics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1