Noel J. Hernandez Gomez, Lisette E. Melendez, Whitney A. Lapic, Sarah L. Sheffield, Ronald D. Lewis
Non-technical Summary. Crinoids, the group known today as the sea lilies, were a major constituent of ocean environments from the late Carboniferous (323–299 million years ago). However, crinoid fossil-forming potential is poor, and they typically fell apart quickly after death. This limits our ability to study much about their life histories, including how they would have grown. Through the discovery of an area of exceptional fossil preservation in the Barnsdall Formation of Oklahoma, we have a rare chance to learn about the growth of one of these species of crinoids, Erisocrinus typus. Here we perform a growth analysis of a well-preserved series of fossils and discuss the patterns that it showed from its juvenile stage to adulthood. Abstract. Crinoids were major constituents of late Carboniferous (Pennsylvanian) marine ecosystems, but their rapid disarticulation rates after death result in few well-preserved specimens, limiting the study of their growth. This is amplified for cladids, who had among the highest disarticulation rates of all Paleozoic crinoids due to the relatively loose suturing of the calyx plates. However, Erisocrinus typus Meek and Worthen, 1865 has been found in unusually large numbers, most preserved as cups but some as nearly complete crowns, in the Barnsdall Formation in Oklahoma. The Barnsdall Formation, a Koncentrat Lagerstätte, is composed predominantly of fine- to medium-grained sandstone, overlain by mudstone and shale; severe compaction of the fossils in the mudstone and shale layer in this formation allowed for exceptional preservation of the plates. Herein, we summarize a growth study based on 10 crowns of E. typus, showcasing a well-defined growth series of this species from the Barnsdall Formation, including fossils from juvenile stages of development, which are rarely preserved. We used high-resolution photographs imported into ImageJ and recorded measurements of the cup and arms for all nondistorted or disarticulated plates. Results show that the plates of the cup grew anisometrically with both positive and negative allometry. The primibrachial plates of E. typus grew with positive allometry. The brachial plates started as uniserial (i.e., cuneiform) as juveniles but shifted to be biserial. Erisocrinus typus broadly shares similar growth trajectories with other cladids. These growth patterns provide insight into feeding strategies and can aid in understanding crinoid evolutionary paleoecological trends.
{"title":"Examining the ontogeny of the Pennsylvanian cladid crinoid Erisocrinus typus Meek and Worthen, 1865","authors":"Noel J. Hernandez Gomez, Lisette E. Melendez, Whitney A. Lapic, Sarah L. Sheffield, Ronald D. Lewis","doi":"10.1017/jpa.2023.41","DOIUrl":"https://doi.org/10.1017/jpa.2023.41","url":null,"abstract":"Non-technical Summary. Crinoids, the group known today as the sea lilies, were a major constituent of ocean environments from the late Carboniferous (323–299 million years ago). However, crinoid fossil-forming potential is poor, and they typically fell apart quickly after death. This limits our ability to study much about their life histories, including how they would have grown. Through the discovery of an area of exceptional fossil preservation in the Barnsdall Formation of Oklahoma, we have a rare chance to learn about the growth of one of these species of crinoids, Erisocrinus typus. Here we perform a growth analysis of a well-preserved series of fossils and discuss the patterns that it showed from its juvenile stage to adulthood. Abstract. Crinoids were major constituents of late Carboniferous (Pennsylvanian) marine ecosystems, but their rapid disarticulation rates after death result in few well-preserved specimens, limiting the study of their growth. This is amplified for cladids, who had among the highest disarticulation rates of all Paleozoic crinoids due to the relatively loose suturing of the calyx plates. However, Erisocrinus typus Meek and Worthen, 1865 has been found in unusually large numbers, most preserved as cups but some as nearly complete crowns, in the Barnsdall Formation in Oklahoma. The Barnsdall Formation, a Koncentrat Lagerstätte, is composed predominantly of fine- to medium-grained sandstone, overlain by mudstone and shale; severe compaction of the fossils in the mudstone and shale layer in this formation allowed for exceptional preservation of the plates. Herein, we summarize a growth study based on 10 crowns of E. typus, showcasing a well-defined growth series of this species from the Barnsdall Formation, including fossils from juvenile stages of development, which are rarely preserved. We used high-resolution photographs imported into ImageJ and recorded measurements of the cup and arms for all nondistorted or disarticulated plates. Results show that the plates of the cup grew anisometrically with both positive and negative allometry. The primibrachial plates of E. typus grew with positive allometry. The brachial plates started as uniserial (i.e., cuneiform) as juveniles but shifted to be biserial. Erisocrinus typus broadly shares similar growth trajectories with other cladids. These growth patterns provide insight into feeding strategies and can aid in understanding crinoid evolutionary paleoecological trends.","PeriodicalId":507883,"journal":{"name":"Journal of Paleontology","volume":"10 1","pages":"906 - 913"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139365507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}