Yavuz Beyazit, Mevlut Kurt, Murat Kekilli, Hakan Goker, Ibrahim Celalettin Haznedaroglu
Ankaferd Blood Stopper (ABS), a unique traditional herbal mixture, has been used topically to stop bleeding for centuries in Anatolia. ABS is a standardized mixture of the plants Thymus vulgaris, Glycyrrhiza glabra, Vitis vinifera, Alpinia officinarum, and Urtica dioica. Through its effects on the endothelium, blood cells, angiogenesis, cellular proliferation, vascular dynamics, and cell mediators, ABS is now becoming an official alternative hemostatic medicine for intractable bleedings that are resistant to conventional anti-hemorrhagic measurements in Turkey. Furthermore, ABS seems to have a considerable therapeutic benefit, because of its anti-infective, anti-neoplastic, and wound healing properties, to restore and maintain tissue homeostasis in a variety of diseases.
{"title":"Evaluation of hemostatic effects of Ankaferd as an alternative medicine.","authors":"Yavuz Beyazit, Mevlut Kurt, Murat Kekilli, Hakan Goker, Ibrahim Celalettin Haznedaroglu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Ankaferd Blood Stopper (ABS), a unique traditional herbal mixture, has been used topically to stop bleeding for centuries in Anatolia. ABS is a standardized mixture of the plants Thymus vulgaris, Glycyrrhiza glabra, Vitis vinifera, Alpinia officinarum, and Urtica dioica. Through its effects on the endothelium, blood cells, angiogenesis, cellular proliferation, vascular dynamics, and cell mediators, ABS is now becoming an official alternative hemostatic medicine for intractable bleedings that are resistant to conventional anti-hemorrhagic measurements in Turkey. Furthermore, ABS seems to have a considerable therapeutic benefit, because of its anti-infective, anti-neoplastic, and wound healing properties, to restore and maintain tissue homeostasis in a variety of diseases.</p>","PeriodicalId":50821,"journal":{"name":"Alternative Medicine Review","volume":"15 4","pages":"329-36"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29565803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The silent information regulator (SIR) genes (sirtuins) comprise a highly conserved family of proteins, with one or more sirtuins present in virtually all species from bacteria to mammals. In mammals seven sirtuin genes - SIRT1 to SIRT7 - have been identified. Emerging from research on the sirtuins is a growing appreciation that they are a very complicated biological response system that influences many other regulator molecules and pathways in complex manners. Part 1 of this article provided an overview of the mammalian sirtuin system, discussed the dietary, lifestyle, and environmental factors that influence sirtuin activity, and summarized research on the importance of vitamin B3 in supporting sirtuin enzyme activity, as well as the role specifically of the amide form of this vitamin - nicotinamide - to inhibit sirtuin enzyme activity. In Part 2 of this review, clinical situations where sirtuins might play a significant role, including longevity, obesity, fatty liver disease, cardiovascular health, neurological disease, and cancer are discussed. Research on the ability of nutritional substances, especially resveratrol, to influence sirtuin expression and function, and hence alter the courses of some clinical situations, is also reviewed.
{"title":"A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2.","authors":"Gregory S Kelly","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The silent information regulator (SIR) genes (sirtuins) comprise a highly conserved family of proteins, with one or more sirtuins present in virtually all species from bacteria to mammals. In mammals seven sirtuin genes - SIRT1 to SIRT7 - have been identified. Emerging from research on the sirtuins is a growing appreciation that they are a very complicated biological response system that influences many other regulator molecules and pathways in complex manners. Part 1 of this article provided an overview of the mammalian sirtuin system, discussed the dietary, lifestyle, and environmental factors that influence sirtuin activity, and summarized research on the importance of vitamin B3 in supporting sirtuin enzyme activity, as well as the role specifically of the amide form of this vitamin - nicotinamide - to inhibit sirtuin enzyme activity. In Part 2 of this review, clinical situations where sirtuins might play a significant role, including longevity, obesity, fatty liver disease, cardiovascular health, neurological disease, and cancer are discussed. Research on the ability of nutritional substances, especially resveratrol, to influence sirtuin expression and function, and hence alter the courses of some clinical situations, is also reviewed.</p>","PeriodicalId":50821,"journal":{"name":"Alternative Medicine Review","volume":"15 4","pages":"313-28"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29565802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Davis W Lamson, Yu-Huan Gu, Steven M Plaza, Matthew S Brignall, Cathy A Brinton, Angela E Sadlon
The oxidizing anticancer system of vitamin C and vitamin K₃ (VC:VK₃, producing hydrogen peroxide via superoxide) was combined individually with melatonin, curcumin, quercetin, or cholecalciferol (VD₃) to determine interactions. Substrates were LNCaP and PC-3 prostate cancer cell lines. Three of the tested antioxidants displayed differences in cell line cytotoxicity. Melatonin combined with VC:VK₃ quenched the oxidizing effect, while VC:VK₃ applied 24 hours after melatonin showed no quenching. With increasing curcumin concentrations, an apparent combined effect of VC:VK₃ and curcumin occurred in LNCaP cells, but not PC-3 cells. Quercetin alone was cytotoxic on both cell lines, but demonstrated an additional 50-percent cytotoxicity on PC-3 cells when combined with VC:VK₃. VD₃ was effective against both cell lines, with more effect on PC-3. This effect was negated on LNCaP cells with the addition of VC:VK₃. In conclusion, a natural antioxidant can enhance or decrease the cytotoxicity of an oxidizing anticancer system in vitro, but generalizations about antioxidants cannot be made.
{"title":"The vitamin C:vitamin K3 system - enhancers and inhibitors of the anticancer effect.","authors":"Davis W Lamson, Yu-Huan Gu, Steven M Plaza, Matthew S Brignall, Cathy A Brinton, Angela E Sadlon","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The oxidizing anticancer system of vitamin C and vitamin K₃ (VC:VK₃, producing hydrogen peroxide via superoxide) was combined individually with melatonin, curcumin, quercetin, or cholecalciferol (VD₃) to determine interactions. Substrates were LNCaP and PC-3 prostate cancer cell lines. Three of the tested antioxidants displayed differences in cell line cytotoxicity. Melatonin combined with VC:VK₃ quenched the oxidizing effect, while VC:VK₃ applied 24 hours after melatonin showed no quenching. With increasing curcumin concentrations, an apparent combined effect of VC:VK₃ and curcumin occurred in LNCaP cells, but not PC-3 cells. Quercetin alone was cytotoxic on both cell lines, but demonstrated an additional 50-percent cytotoxicity on PC-3 cells when combined with VC:VK₃. VD₃ was effective against both cell lines, with more effect on PC-3. This effect was negated on LNCaP cells with the addition of VC:VK₃. In conclusion, a natural antioxidant can enhance or decrease the cytotoxicity of an oxidizing anticancer system in vitro, but generalizations about antioxidants cannot be made.</p>","PeriodicalId":50821,"journal":{"name":"Alternative Medicine Review","volume":"15 4","pages":"345-51"},"PeriodicalIF":0.0,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29565805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Some environmental toxins like DDT and other chlorinated compounds accumulate in the body because of their fat-soluble nature. Other compounds do not stay long in the body, but still cause toxic effects during the time they are present. For serious health problems to arise, exposure to these rapidly-clearing compounds must occur on a daily basis. Two such classes of compounds are the phthalate plasticizers and parabens, both of which are used in many personal care products, some medications, and even foods and food preservation. The phthalates are commonly found in foods and household dust. Even though they have relatively short half-lives in humans, phthalates have been associated with a number of serious health problems, including infertility, testicular dysgenesis, obesity, asthma, and allergies, as well as leiomyomas and breast cancer. Parabens, which can be dermally absorbed, are present in many cosmetic products, including antiperspirants. Their estrogenicity and tissue presence are a cause for concern regarding breast cancer. Fortunately, these compounds are relatively easy to avoid and such steps can result in dramatic reductions of urinary levels of these compounds.
{"title":"Toxic effects of the easily avoidable phthalates and parabens.","authors":"Walter J Crinnion","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Some environmental toxins like DDT and other chlorinated compounds accumulate in the body because of their fat-soluble nature. Other compounds do not stay long in the body, but still cause toxic effects during the time they are present. For serious health problems to arise, exposure to these rapidly-clearing compounds must occur on a daily basis. Two such classes of compounds are the phthalate plasticizers and parabens, both of which are used in many personal care products, some medications, and even foods and food preservation. The phthalates are commonly found in foods and household dust. Even though they have relatively short half-lives in humans, phthalates have been associated with a number of serious health problems, including infertility, testicular dysgenesis, obesity, asthma, and allergies, as well as leiomyomas and breast cancer. Parabens, which can be dermally absorbed, are present in many cosmetic products, including antiperspirants. Their estrogenicity and tissue presence are a cause for concern regarding breast cancer. Fortunately, these compounds are relatively easy to avoid and such steps can result in dramatic reductions of urinary levels of these compounds.</p>","PeriodicalId":50821,"journal":{"name":"Alternative Medicine Review","volume":"15 3","pages":"190-6"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29533439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manipulation of the extracellular and/or intracellular pH of tumors may have considerable potential in cancer therapy. The extracellular space of most tumors is mildly acidic, owing to exuberant production of lactic acid. Aerobic glycolysis - attributable largely to chronic activation of hypoxia-inducible factor-1 (HIF-1) - as well as tumor hypoxia, are chiefly responsible for this phenomenon. Tumor acidity tends to correlate with cancer aggressiveness; in part, this reflects the ability of HIF-1 to promote invasiveness and angiogenesis. But there is growing evidence that extracellular acidity per se boosts the invasiveness and metastatic capacity of cancer cells; moreover, this acidity renders cancer cells relatively resistant to the high proportion of chemotherapeutic drugs that are mildly basic, and may impede immune rejection of tumors. Thus, practical strategies for raising the extracellular pH of tumors may have therapeutic utility. In rodents, oral administration of sodium bicarbonate can raise the extracellular pH of tumors, an effect associated with inhibition of metastasis and improved responsiveness to certain cytotoxic agents; clinical application of this strategy appears feasible. As an alternative approach, drugs that inhibit proton pumps in cancer cells may alleviate extracellular tumor acidity while lowering the intracellular pH of cancer cells; reduction of intracellular pH slows proliferation and promotes apoptosis in various cancer cell lines. Well-tolerated doses of the proton pump inhibitor esomeprazole have markedly impeded tumor growth and prolonged survival in nude mice implanted with a human melanoma. Finally, it may prove feasible to exploit the aerobic glycolysis of cancers in hyperacidification therapies; intense intracellular acidification of cancer cells achieved by induced hyperglycemia, concurrent administration of proton pump inhibitor drugs, and possibly dinitrophenol, may have the potential to kill cancer cells directly, or to potentiate their responsiveness to adjunctive measures. A similar strategy, but without proton pump inhibition, could be employed to maximize extracellular tumor acidity, enabling tumor-selective release of cytotoxic drugs encased in pH-sensitive nanoparticles.
{"title":"Manipulating tumor acidification as a cancer treatment strategy.","authors":"Mark F McCarty, Julian Whitaker","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Manipulation of the extracellular and/or intracellular pH of tumors may have considerable potential in cancer therapy. The extracellular space of most tumors is mildly acidic, owing to exuberant production of lactic acid. Aerobic glycolysis - attributable largely to chronic activation of hypoxia-inducible factor-1 (HIF-1) - as well as tumor hypoxia, are chiefly responsible for this phenomenon. Tumor acidity tends to correlate with cancer aggressiveness; in part, this reflects the ability of HIF-1 to promote invasiveness and angiogenesis. But there is growing evidence that extracellular acidity per se boosts the invasiveness and metastatic capacity of cancer cells; moreover, this acidity renders cancer cells relatively resistant to the high proportion of chemotherapeutic drugs that are mildly basic, and may impede immune rejection of tumors. Thus, practical strategies for raising the extracellular pH of tumors may have therapeutic utility. In rodents, oral administration of sodium bicarbonate can raise the extracellular pH of tumors, an effect associated with inhibition of metastasis and improved responsiveness to certain cytotoxic agents; clinical application of this strategy appears feasible. As an alternative approach, drugs that inhibit proton pumps in cancer cells may alleviate extracellular tumor acidity while lowering the intracellular pH of cancer cells; reduction of intracellular pH slows proliferation and promotes apoptosis in various cancer cell lines. Well-tolerated doses of the proton pump inhibitor esomeprazole have markedly impeded tumor growth and prolonged survival in nude mice implanted with a human melanoma. Finally, it may prove feasible to exploit the aerobic glycolysis of cancers in hyperacidification therapies; intense intracellular acidification of cancer cells achieved by induced hyperglycemia, concurrent administration of proton pump inhibitor drugs, and possibly dinitrophenol, may have the potential to kill cancer cells directly, or to potentiate their responsiveness to adjunctive measures. A similar strategy, but without proton pump inhibition, could be employed to maximize extracellular tumor acidity, enabling tumor-selective release of cytotoxic drugs encased in pH-sensitive nanoparticles.</p>","PeriodicalId":50821,"journal":{"name":"Alternative Medicine Review","volume":"15 3","pages":"264-72"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29533443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pinch me, I must be dreaming.","authors":"Walter Crinnion","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":50821,"journal":{"name":"Alternative Medicine Review","volume":"15 3","pages":"188-9"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29533438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD) is characterized by dysfunctional intracellular and extracellular biochemical processes that result in neuron death. This article summarizes hypotheses regarding cell dysfunction in AD and discusses the effectiveness of, and problems with, different therapies. Pharmaceutical therapies discussed include cholinesterase inhibitors, memantine, antihypertensive drugs, anti-inflammatory drugs, secretase inhibitors, insulin resistance drugs, etanercept, brain-derived neurotrophic factor, and immunization. Nutritional and botanical therapies included are huperzine A, polyphenols, Ginkgo, Panax ginseng, Withania somnifera, phosphatidylserine, alpha-lipoic acid, omega-3 fatty acids, acetyl L-carnitine, coenzyme Q10, various vitamins and minerals, and melatonin. Stimulatory therapies discussed are physical exercise, cognitive training, music, and socialization. Finally, treatment strategies are discussed in light of the benefits and drawbacks of different therapeutic approaches. It is concluded that potential risks of both approved and non-approved therapies should be weighed against the potential benefits and certain consequences of disease progression. Approaches that target several dysfunctions simultaneously and that emphasize nutritional, botanical, and stimulatory therapies may offer the most benefit at this time.
{"title":"Alzheimer's disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners.","authors":"Keith A Wollen","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is characterized by dysfunctional intracellular and extracellular biochemical processes that result in neuron death. This article summarizes hypotheses regarding cell dysfunction in AD and discusses the effectiveness of, and problems with, different therapies. Pharmaceutical therapies discussed include cholinesterase inhibitors, memantine, antihypertensive drugs, anti-inflammatory drugs, secretase inhibitors, insulin resistance drugs, etanercept, brain-derived neurotrophic factor, and immunization. Nutritional and botanical therapies included are huperzine A, polyphenols, Ginkgo, Panax ginseng, Withania somnifera, phosphatidylserine, alpha-lipoic acid, omega-3 fatty acids, acetyl L-carnitine, coenzyme Q10, various vitamins and minerals, and melatonin. Stimulatory therapies discussed are physical exercise, cognitive training, music, and socialization. Finally, treatment strategies are discussed in light of the benefits and drawbacks of different therapeutic approaches. It is concluded that potential risks of both approved and non-approved therapies should be weighed against the potential benefits and certain consequences of disease progression. Approaches that target several dysfunctions simultaneously and that emphasize nutritional, botanical, and stimulatory therapies may offer the most benefit at this time.</p>","PeriodicalId":50821,"journal":{"name":"Alternative Medicine Review","volume":"15 3","pages":"223-44"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29533441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flight 483 now boarding.","authors":"Al Czap","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":50821,"journal":{"name":"Alternative Medicine Review","volume":"15 3","pages":"183-5"},"PeriodicalIF":0.0,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29533485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}