首页 > 最新文献

Algorithms for Molecular Biology最新文献

英文 中文
Unbiased anchors for reliable genome-wide synteny detection. 无偏锚可靠的全基因组同步检测。
IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-05 DOI: 10.1186/s13015-025-00275-9
Karl K Käther, Andreas Remmel, Steffen Lemke, Peter F Stadler

Orthology inference lies at the foundation of comparative genomics research. The correct identification of loci which descended from a common ancestral sequence is not only complicated by sequence divergence but also duplication and other genome rearrangements. The conservation of gene order, i.e. synteny, is used in conjunction with sequence similarity as an additional factor for orthology determination. Current approaches, however, rely on genome annotations and are therefore limited. Here we present an annotation-free approach and compare it to synteny analysis with annotations. We find that our approach works better in closely related genomes whereas there is a better performance with annotations for more distantly related genomes. Overall, the presented algorithm offers a useful alternative to annotation-based methods and can outperform them in many cases.

同源推断是比较基因组学研究的基础。正确鉴定来自共同祖先序列的基因座不仅因序列分化而复杂化,而且还因重复和其他基因组重排而复杂化。基因顺序的保守性,即synteny,与序列相似性一起作为确定同源性的附加因素。然而,目前的方法依赖于基因组注释,因此受到限制。在这里,我们提出了一种无需注释的方法,并将其与带有注释的句法分析进行了比较。我们发现,我们的方法在密切相关的基因组中工作得更好,而在更远的基因组上有更好的性能。总的来说,本文提出的算法为基于注释的方法提供了一个有用的替代方案,并且在许多情况下优于它们。
{"title":"Unbiased anchors for reliable genome-wide synteny detection.","authors":"Karl K Käther, Andreas Remmel, Steffen Lemke, Peter F Stadler","doi":"10.1186/s13015-025-00275-9","DOIUrl":"10.1186/s13015-025-00275-9","url":null,"abstract":"<p><p>Orthology inference lies at the foundation of comparative genomics research. The correct identification of loci which descended from a common ancestral sequence is not only complicated by sequence divergence but also duplication and other genome rearrangements. The conservation of gene order, i.e. synteny, is used in conjunction with sequence similarity as an additional factor for orthology determination. Current approaches, however, rely on genome annotations and are therefore limited. Here we present an annotation-free approach and compare it to synteny analysis with annotations. We find that our approach works better in closely related genomes whereas there is a better performance with annotations for more distantly related genomes. Overall, the presented algorithm offers a useful alternative to annotation-based methods and can outperform them in many cases.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"5"},"PeriodicalIF":1.5,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143788963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The open-closed mod-minimizer algorithm. 开闭模最小化算法。
IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-17 DOI: 10.1186/s13015-025-00270-0
Ragnar Groot Koerkamp, Daniel Liu, Giulio Ermanno Pibiri

Sampling algorithms that deterministically select a subset of k -mers are an important building block in bioinformatics applications. For example, they are used to index large textual collections, like DNA, and to compare sequences quickly. In such applications, a sampling algorithm is required to select one k -mer out of every window of w consecutive k -mers. The folklore and most used scheme is the random minimizer that selects the smallest k -mer in the window according to some random order. This scheme is remarkably simple and versatile, and has a density (expected fraction of selected k -mers) of 2 / ( w + 1 ) . In practice, lower density leads to faster methods and smaller indexes, and it turns out that the random minimizer is not the best one can do. Indeed, some schemes are known to approach optimal density 1/w when k , like the recently introduced mod-minimizer (Groot Koerkamp and Pibiri, WABI 2024). In this work, we study methods that achieve low density when k w . In this small-k regime, a practical method with provably better density than the random minimizer is the miniception (Zheng et al., Bioinformatics 2021). This method can be elegantly described as sampling the smallest closed sycnmer (Edgar, PeerJ 2021) in the window according to some random order. We show that extending the miniception to prefer sampling open syncmers yields much better density. This new method-the open-closed minimizer-offers improved density for small k w while being as fast to compute as the random minimizer. Compared to methods based on decycling sets, that achieve very low density in the small-k regime, our method has comparable density while being computationally simpler and intuitive. Furthermore, we extend the mod-minimizer to improve density of any scheme that works well for small k to also work well when k > w is large. We hence obtain the open-closed mod-minimizer, a practical method that improves over the mod-minimizer for all k.

确定性地选择k -mers子集的采样算法是生物信息学应用中的重要组成部分。例如,它们用于为大型文本集合(如DNA)建立索引,并用于快速比较序列。在这样的应用中,需要一个采样算法从w个连续k -mer的每个窗口中选择一个k -mer。最流行和最常用的方案是随机最小化器,它根据随机顺序选择窗口中最小的k -mer。该方案非常简单和通用,其密度(所选k -mers的期望分数)为2 / (w + 1)。在实践中,较低的密度会导致更快的方法和更小的索引,并且事实证明随机最小化器并不是最好的方法。事实上,已知一些方案在k→∞时接近最优密度1/w,例如最近引入的模最小化器(Groot Koerkamp和Pibiri, WABI 2024)。在这项工作中,我们研究了k≤w时实现低密度的方法。在这个小k范围内,一个可证明比随机最小化器密度更好的实用方法是miniception (Zheng et al., Bioinformatics 2021)。这种方法可以优雅地描述为根据随机顺序对窗口中最小的封闭同步子(Edgar, PeerJ 2021)进行采样。我们证明了扩展miniception来选择采样开放的synsyners可以产生更好的密度。这种新方法——开闭最小化器——在k≤w时提供了改进的密度,同时与随机最小化器一样快速计算。与基于循环集的方法相比,在小k范围内密度非常低,我们的方法具有相当的密度,同时计算更简单和直观。此外,我们扩展了模型最小化器,以提高任何方案的密度,该方案适用于小k,也适用于大k b> w。因此,我们得到了开闭模最小器,这是一种实用的方法,对所有k的模最小器都有改进。
{"title":"The open-closed mod-minimizer algorithm.","authors":"Ragnar Groot Koerkamp, Daniel Liu, Giulio Ermanno Pibiri","doi":"10.1186/s13015-025-00270-0","DOIUrl":"10.1186/s13015-025-00270-0","url":null,"abstract":"<p><p>Sampling algorithms that deterministically select a subset of <math><mi>k</mi></math> -mers are an important building block in bioinformatics applications. For example, they are used to index large textual collections, like DNA, and to compare sequences quickly. In such applications, a sampling algorithm is required to select one <math><mi>k</mi></math> -mer out of every window of w consecutive <math><mi>k</mi></math> -mers. The folklore and most used scheme is the random minimizer that selects the smallest <math><mi>k</mi></math> -mer in the window according to some random order. This scheme is remarkably simple and versatile, and has a density (expected fraction of selected <math><mi>k</mi></math> -mers) of <math><mrow><mn>2</mn> <mo>/</mo> <mo>(</mo> <mi>w</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo></mrow> </math> . In practice, lower density leads to faster methods and smaller indexes, and it turns out that the random minimizer is not the best one can do. Indeed, some schemes are known to approach optimal density 1/w when <math><mrow><mi>k</mi> <mo>→</mo> <mi>∞</mi></mrow> </math> , like the recently introduced mod-minimizer (Groot Koerkamp and Pibiri, WABI 2024). In this work, we study methods that achieve low density when <math><mrow><mi>k</mi> <mo>≤</mo> <mi>w</mi></mrow> </math> . In this small-k regime, a practical method with provably better density than the random minimizer is the miniception (Zheng et al., Bioinformatics 2021). This method can be elegantly described as sampling the smallest closed sycnmer (Edgar, PeerJ 2021) in the window according to some random order. We show that extending the miniception to prefer sampling open syncmers yields much better density. This new method-the open-closed minimizer-offers improved density for small <math><mrow><mi>k</mi> <mo>≤</mo> <mi>w</mi></mrow> </math> while being as fast to compute as the random minimizer. Compared to methods based on decycling sets, that achieve very low density in the small-k regime, our method has comparable density while being computationally simpler and intuitive. Furthermore, we extend the mod-minimizer to improve density of any scheme that works well for small k to also work well when <math><mrow><mi>k</mi> <mo>></mo> <mi>w</mi></mrow> </math> is large. We hence obtain the open-closed mod-minimizer, a practical method that improves over the mod-minimizer for all k.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"4"},"PeriodicalIF":1.5,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143651867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mem-based pangenome indexing for k-mer queries. 针对 k-mer 查询的基于 Mem 的泛基因组索引。
IF 1.7 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-03-01 DOI: 10.1186/s13015-025-00272-y
Stephen Hwang, Nathaniel K Brown, Omar Y Ahmed, Katharine M Jenike, Sam Kovaka, Michael C Schatz, Ben Langmead

Pangenomes are growing in number and size, thanks to the prevalence of high-quality long-read assemblies. However, current methods for studying sequence composition and conservation within pangenomes have limitations. Methods based on graph pangenomes require a computationally expensive multiple-alignment step, which can leave out some variation. Indexes based on k-mers and de Bruijn graphs are limited to answering questions at a specific substring length k. We present Maximal Exact Match Ordered (MEMO), a pangenome indexing method based on maximal exact matches (MEMs) between sequences. A single MEMO index can handle arbitrary-length queries over pangenomic windows. MEMO enables both queries that test k-mer presence/absence (membership queries) and that count the number of genomes containing k-mers in a window (conservation queries). MEMO's index for a pangenome of 89 human autosomal haplotypes fits in 2.04 GB, 8.8 × smaller than a comparable KMC3 index and 11.4 × smaller than a PanKmer index. MEMO indexes can be made smaller by sacrificing some counting resolution, with our decile-resolution HPRC index reaching 0.67 GB. MEMO can conduct a conservation query for 31-mers over the human leukocyte antigen locus in 13.89 s, 2.5 × faster than other approaches. MEMO's small index size, lack of k-mer length dependence, and efficient queries make it a flexible tool for studying and visualizing substring conservation in pangenomes.

由于高质量长读片段的流行,泛基因组在数量和大小上都在增长。然而,目前研究泛基因组序列组成和保守性的方法存在局限性。基于图形泛基因组的方法需要计算昂贵的多次校准步骤,这可能会遗漏一些变化。基于k-mers和de Bruijn图的索引仅限于回答特定子串长度k的问题。我们提出了一种基于序列之间最大精确匹配(MEMs)的泛基因组索引方法——最大精确匹配有序(MEMO)。单个MEMO索引可以处理泛基因组窗口上任意长度的查询。MEMO支持测试k-mer是否存在的查询(成员查询)和计算一个窗口中包含k-mers的基因组数量(保守查询)。MEMO对89个人类常染色体单倍型的泛基因组的拟合指数为2.04 GB,比可比的KMC3指数小8.8倍,比PanKmer指数小11.4倍。通过牺牲一些计数分辨率,MEMO索引可以变得更小,我们的十分之一分辨率HPRC索引达到0.67 GB。MEMO可以在13.89 s内完成对人白细胞抗原位点31-mers的保守查询,比其他方法快2.5倍。MEMO的小索引大小,缺乏k-mer长度依赖,以及高效的查询使其成为研究和可视化泛基因组子串守恒的灵活工具。
{"title":"Mem-based pangenome indexing for k-mer queries.","authors":"Stephen Hwang, Nathaniel K Brown, Omar Y Ahmed, Katharine M Jenike, Sam Kovaka, Michael C Schatz, Ben Langmead","doi":"10.1186/s13015-025-00272-y","DOIUrl":"10.1186/s13015-025-00272-y","url":null,"abstract":"<p><p>Pangenomes are growing in number and size, thanks to the prevalence of high-quality long-read assemblies. However, current methods for studying sequence composition and conservation within pangenomes have limitations. Methods based on graph pangenomes require a computationally expensive multiple-alignment step, which can leave out some variation. Indexes based on k-mers and de Bruijn graphs are limited to answering questions at a specific substring length k. We present Maximal Exact Match Ordered (MEMO), a pangenome indexing method based on maximal exact matches (MEMs) between sequences. A single MEMO index can handle arbitrary-length queries over pangenomic windows. MEMO enables both queries that test k-mer presence/absence (membership queries) and that count the number of genomes containing k-mers in a window (conservation queries). MEMO's index for a pangenome of 89 human autosomal haplotypes fits in 2.04 GB, 8.8 <math><mo>×</mo></math> smaller than a comparable KMC3 index and 11.4 <math><mo>×</mo></math> smaller than a PanKmer index. MEMO indexes can be made smaller by sacrificing some counting resolution, with our decile-resolution HPRC index reaching 0.67 GB. MEMO can conduct a conservation query for 31-mers over the human leukocyte antigen locus in 13.89 s, 2.5 <math><mo>×</mo></math> faster than other approaches. MEMO's small index size, lack of k-mer length dependence, and efficient queries make it a flexible tool for studying and visualizing substring conservation in pangenomes.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"3"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143538063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding high posterior density phylogenies by systematically extending a directed acyclic graph. 通过系统地扩展有向无环图来寻找高后验密度系统发育。
IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-28 DOI: 10.1186/s13015-025-00273-x
Chris Jennings-Shaffer, David H Rich, Matthew Macaulay, Michael D Karcher, Tanvi Ganapathy, Shosuke Kiami, Anna Kooperberg, Cheng Zhang, Marc A Suchard, Frederick A Matsen

Bayesian phylogenetics typically estimates a posterior distribution, or aspects thereof, using Markov chain Monte Carlo methods. These methods integrate over tree space by applying local rearrangements to move a tree through its space as a random walk. Previous work explored the possibility of replacing this random walk with a systematic search, but was quickly overwhelmed by the large number of probable trees in the posterior distribution. In this paper we develop methods to sidestep this problem using a recently introduced structure called the subsplit directed acyclic graph (sDAG). This structure can represent many trees at once, and local rearrangements of trees translate to methods of enlarging the sDAG. Here we propose two methods of introducing, ranking, and selecting local rearrangements on sDAGs to produce a collection of trees with high posterior density. One of these methods successfully recovers the set of high posterior density trees across a range of data sets. However, we find that a simpler strategy of aggregating trees into an sDAG in fact is computationally faster and returns a higher fraction of probable trees.

贝叶斯系统发育通常使用马尔可夫链蒙特卡罗方法估计后验分布或其各个方面。这些方法通过应用局部重排来将树作为随机行走在其空间中移动,从而在树空间中集成。先前的工作探索了用系统搜索取代随机漫步的可能性,但很快就被后验分布中大量的可能树所淹没。在本文中,我们开发了一种方法来回避这个问题,使用一种最近引入的结构,称为子分裂有向无环图(sDAG)。这种结构可以一次表示许多树,并且树的局部重排转化为扩大sDAG的方法。本文提出了引入、排序和选择sDAGs上的局部重排的两种方法,以产生具有高后验密度的树集合。其中一种方法成功地恢复了一系列数据集上的高后验密度树集。然而,我们发现将树聚合到sDAG中的更简单的策略实际上在计算上更快,并且返回更高比例的可能树。
{"title":"Finding high posterior density phylogenies by systematically extending a directed acyclic graph.","authors":"Chris Jennings-Shaffer, David H Rich, Matthew Macaulay, Michael D Karcher, Tanvi Ganapathy, Shosuke Kiami, Anna Kooperberg, Cheng Zhang, Marc A Suchard, Frederick A Matsen","doi":"10.1186/s13015-025-00273-x","DOIUrl":"10.1186/s13015-025-00273-x","url":null,"abstract":"<p><p>Bayesian phylogenetics typically estimates a posterior distribution, or aspects thereof, using Markov chain Monte Carlo methods. These methods integrate over tree space by applying local rearrangements to move a tree through its space as a random walk. Previous work explored the possibility of replacing this random walk with a systematic search, but was quickly overwhelmed by the large number of probable trees in the posterior distribution. In this paper we develop methods to sidestep this problem using a recently introduced structure called the subsplit directed acyclic graph (sDAG). This structure can represent many trees at once, and local rearrangements of trees translate to methods of enlarging the sDAG. Here we propose two methods of introducing, ranking, and selecting local rearrangements on sDAGs to produce a collection of trees with high posterior density. One of these methods successfully recovers the set of high posterior density trees across a range of data sets. However, we find that a simpler strategy of aggregating trees into an sDAG in fact is computationally faster and returns a higher fraction of probable trees.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"2"},"PeriodicalIF":1.5,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143532146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional hitting sets for efficient multiset sketching. 分数命中集用于高效的多集素描。
IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-02-08 DOI: 10.1186/s13015-024-00268-0
Timothé Rouzé, Igor Martayan, Camille Marchet, Antoine Limasset

The exponential increase in publicly available sequencing data and genomic resources necessitates the development of highly efficient methods for data processing and analysis. Locality-sensitive hashing techniques have successfully transformed large datasets into smaller, more manageable sketches while maintaining comparability using metrics such as Jaccard and containment indices. However, fixed-size sketches encounter difficulties when applied to divergent datasets. Scalable sketching methods, such as sourmash, provide valuable solutions but still lack resource-efficient, tailored indexing. Our objective is to create lighter sketches with comparable results while enhancing efficiency. We introduce the concept of Fractional Hitting Sets, a generalization of Universal Hitting Sets, which cover a specified fraction of the k-mer space. In theory and practice, we demonstrate the feasibility of achieving such coverage with simple but highly efficient schemes. By encoding the covered k-mers as super-k-mers, we provide a space-efficient exact representation that also enables optimized comparisons. Our novel tool, supersampler, implements this scheme, and experimental results with real bacterial collections closely match our theoretical findings. In comparison to sourmash, supersampler achieves similar outcomes while utilizing an order of magnitude less space and memory and operating several times faster. This highlights the potential of our approach in addressing the challenges presented by the ever-expanding landscape of genomic data. supersampler is an open-source software and can be accessed at https://github.com/TimRouze/supersampler . The data required to reproduce the results presented in this manuscript is available at https://github.com/TimRouze/supersampler/experiments .

公开可用的测序数据和基因组资源呈指数级增长,需要开发高效的数据处理和分析方法。位置敏感的散列技术已经成功地将大型数据集转换为更小、更易于管理的草图,同时使用Jaccard和containment索引等指标保持可比性。然而,固定大小的草图在应用于不同的数据集时会遇到困难。可扩展的素描方法,如sourmash,提供了有价值的解决方案,但仍然缺乏资源高效,量身定制的索引。我们的目标是创建具有可比结果的更轻的草图,同时提高效率。我们引入了分数命中集的概念,它是普遍命中集的推广,它覆盖了k-mer空间的特定分数。在理论和实践中,我们证明了用简单而高效的方案实现这种覆盖的可行性。通过将覆盖的k-mers编码为super-k-mers,我们提供了一种节省空间的精确表示,也可以进行优化比较。我们的新工具,超级采样器,实现了这一方案,实验结果与真实的细菌收集密切匹配我们的理论发现。与sourmash相比,supersampler在利用更少的空间和内存并以几倍的速度运行的同时实现了类似的结果。这凸显了我们的方法在应对不断扩大的基因组数据所带来的挑战方面的潜力。supersampler是一个开源软件,可以在https://github.com/TimRouze/supersampler上访问。重现本文中所呈现的结果所需的数据可在https://github.com/TimRouze/supersampler/experiments上获得。
{"title":"Fractional hitting sets for efficient multiset sketching.","authors":"Timothé Rouzé, Igor Martayan, Camille Marchet, Antoine Limasset","doi":"10.1186/s13015-024-00268-0","DOIUrl":"10.1186/s13015-024-00268-0","url":null,"abstract":"<p><p>The exponential increase in publicly available sequencing data and genomic resources necessitates the development of highly efficient methods for data processing and analysis. Locality-sensitive hashing techniques have successfully transformed large datasets into smaller, more manageable sketches while maintaining comparability using metrics such as Jaccard and containment indices. However, fixed-size sketches encounter difficulties when applied to divergent datasets. Scalable sketching methods, such as sourmash, provide valuable solutions but still lack resource-efficient, tailored indexing. Our objective is to create lighter sketches with comparable results while enhancing efficiency. We introduce the concept of Fractional Hitting Sets, a generalization of Universal Hitting Sets, which cover a specified fraction of the k-mer space. In theory and practice, we demonstrate the feasibility of achieving such coverage with simple but highly efficient schemes. By encoding the covered k-mers as super-k-mers, we provide a space-efficient exact representation that also enables optimized comparisons. Our novel tool, supersampler, implements this scheme, and experimental results with real bacterial collections closely match our theoretical findings. In comparison to sourmash, supersampler achieves similar outcomes while utilizing an order of magnitude less space and memory and operating several times faster. This highlights the potential of our approach in addressing the challenges presented by the ever-expanding landscape of genomic data. supersampler is an open-source software and can be accessed at https://github.com/TimRouze/supersampler . The data required to reproduce the results presented in this manuscript is available at https://github.com/TimRouze/supersampler/experiments .</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"1"},"PeriodicalIF":1.5,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the parameterized complexity of the median and closest problems under some permutation metrics. 若干置换度量下中值和最近邻问题的参数化复杂度。
IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-12-24 DOI: 10.1186/s13015-024-00269-z
Luís Cunha, Ignasi Sau, Uéverton Souza

Genome rearrangements are events where large blocks of DNA exchange places during evolution. The analysis of these events is a promising tool for understanding evolutionary genomics, providing data for phylogenetic reconstruction based on genome rearrangement measures. Many pairwise rearrangement distances have been proposed, based on finding the minimum number of rearrangement events to transform one genome into the other, using some predefined operation. When more than two genomes are considered, we have the more challenging problem of rearrangement-based phylogeny reconstruction. Given a set of genomes and a distance notion, there are at least two natural ways to define the "target" genome. On the one hand, finding a genome that minimizes the sum of the distances from this to any other, called the median genome. On the other hand, finding a genome that minimizes the maximum distance to any other, called the closest genome. Considering genomes as permutations of distinct integers, some distance metrics have been extensively studied. We investigate the median and closest problems on permutations over the following metrics: breakpoint distance, swap distance, block-interchange distance, short-block-move distance, and transposition distance. In biological applications some values are usually very small, such as the solution value d or the number k of input permutations. For each of these metrics and parameters d or k, we analyze the closest and the median problems from the viewpoint of parameterized complexity. We obtain the following results: NP-hardness for finding the median/closest permutation regarding some metrics of distance, even for only k = 3 permutations; Polynomial kernels for the problems of finding the median permutation of all studied metrics, considering the target distance d as parameter; NP-hardness result for finding the closest permutation by short-block-moves; FPT algorithms and infeasibility of polynomial kernels for finding the closest permutation for some metrics when parameterized by the target distance d.

基因组重排是在进化过程中大量DNA交换位置的事件。这些事件的分析是理解进化基因组学的一个有前途的工具,为基于基因组重排措施的系统发育重建提供了数据。许多配对重排距离已被提出,基于寻找重排事件的最小数量,以转换一个基因组到另一个基因组,使用一些预定义的操作。当考虑两个以上的基因组时,我们面临着基于重排的系统发育重建的更具挑战性的问题。给定一组基因组和一个距离概念,至少有两种自然的方法来定义“目标”基因组。一方面,找到一个基因组,它能最小化从这个到任何其他的距离的总和,称为中位数基因组。另一方面,找到一个与任何其他基因组的最大距离最小的基因组,称为最近基因组。考虑到基因组是不同整数的排列,一些距离度量得到了广泛的研究。我们在以下指标上研究排列的中位数和最接近问题:断点距离,交换距离,块交换距离,短块移动距离和转置距离。在生物学应用中,有些值通常非常小,例如解值d或输入排列的个数k。对于这些指标和参数d或k,我们从参数化复杂性的角度分析了最接近和中值问题。我们得到了以下结果:对于某些距离度量,即使只有k = 3个排列,寻找中位数/最接近排列的np -硬度;以目标距离d为参数,求所研究指标的中位数排列的多项式核问题;利用短块移动寻找最接近排列的np -硬度结果FPT算法和多项式核在以目标距离d作为参数时寻找最接近排列的不可行性。
{"title":"On the parameterized complexity of the median and closest problems under some permutation metrics.","authors":"Luís Cunha, Ignasi Sau, Uéverton Souza","doi":"10.1186/s13015-024-00269-z","DOIUrl":"10.1186/s13015-024-00269-z","url":null,"abstract":"<p><p>Genome rearrangements are events where large blocks of DNA exchange places during evolution. The analysis of these events is a promising tool for understanding evolutionary genomics, providing data for phylogenetic reconstruction based on genome rearrangement measures. Many pairwise rearrangement distances have been proposed, based on finding the minimum number of rearrangement events to transform one genome into the other, using some predefined operation. When more than two genomes are considered, we have the more challenging problem of rearrangement-based phylogeny reconstruction. Given a set of genomes and a distance notion, there are at least two natural ways to define the \"target\" genome. On the one hand, finding a genome that minimizes the sum of the distances from this to any other, called the median genome. On the other hand, finding a genome that minimizes the maximum distance to any other, called the closest genome. Considering genomes as permutations of distinct integers, some distance metrics have been extensively studied. We investigate the median and closest problems on permutations over the following metrics: breakpoint distance, swap distance, block-interchange distance, short-block-move distance, and transposition distance. In biological applications some values are usually very small, such as the solution value d or the number k of input permutations. For each of these metrics and parameters d or k, we analyze the closest and the median problems from the viewpoint of parameterized complexity. We obtain the following results: NP-hardness for finding the median/closest permutation regarding some metrics of distance, even for only <math><mrow><mi>k</mi> <mo>=</mo> <mn>3</mn></mrow> </math> permutations; Polynomial kernels for the problems of finding the median permutation of all studied metrics, considering the target distance d as parameter; NP-hardness result for finding the closest permutation by short-block-moves; FPT algorithms and infeasibility of polynomial kernels for finding the closest permutation for some metrics when parameterized by the target distance d.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"19 1","pages":"24"},"PeriodicalIF":1.5,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669244/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TINNiK: inference of the tree of blobs of a species network under the coalescent model. TINNiK:聚合模型下的物种网络 Blob 树推断。
IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-05 DOI: 10.1186/s13015-024-00266-2
Elizabeth S Allman, Hector Baños, Jonathan D Mitchell, John A Rhodes

The tree of blobs of a species network shows only the tree-like aspects of relationships of taxa on a network, omitting information on network substructures where hybridization or other types of lateral transfer of genetic information occur. By isolating such regions of a network, inference of the tree of blobs can serve as a starting point for a more detailed investigation, or indicate the limit of what may be inferrable without additional assumptions. Building on our theoretical work on the identifiability of the tree of blobs from gene quartet distributions under the Network Multispecies Coalescent model, we develop an algorithm, TINNiK, for statistically consistent tree of blobs inference. We provide examples of its application to both simulated and empirical datasets, utilizing an implementation in the MSCquartets 2.0 R package.

物种网络的 "花叶树 "只显示了网络中类群关系的树状方面,而忽略了发生杂交或其他类型遗传信息横向转移的网络子结构的信息。通过分离网络中的这些区域,推断 "斑点树 "可以作为更详细研究的起点,或表明在没有额外假设的情况下可以推断的极限。基于我们在网络多物种凝聚模型下从基因四元组分布中得出的花叶树可识别性的理论研究,我们开发了一种算法 TINNiK,用于统计一致的花叶树推断。我们利用 MSCquartets 2.0 R 软件包中的实现,提供了该算法在模拟和经验数据集上的应用实例。
{"title":"TINNiK: inference of the tree of blobs of a species network under the coalescent model.","authors":"Elizabeth S Allman, Hector Baños, Jonathan D Mitchell, John A Rhodes","doi":"10.1186/s13015-024-00266-2","DOIUrl":"10.1186/s13015-024-00266-2","url":null,"abstract":"<p><p>The tree of blobs of a species network shows only the tree-like aspects of relationships of taxa on a network, omitting information on network substructures where hybridization or other types of lateral transfer of genetic information occur. By isolating such regions of a network, inference of the tree of blobs can serve as a starting point for a more detailed investigation, or indicate the limit of what may be inferrable without additional assumptions. Building on our theoretical work on the identifiability of the tree of blobs from gene quartet distributions under the Network Multispecies Coalescent model, we develop an algorithm, TINNiK, for statistically consistent tree of blobs inference. We provide examples of its application to both simulated and empirical datasets, utilizing an implementation in the MSCquartets 2.0 R package.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"19 1","pages":"23"},"PeriodicalIF":1.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New generalized metric based on branch length distance to compare B cell lineage trees. 基于分支长度距离的新通用指标,用于比较 B 细胞系树。
IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-10-05 DOI: 10.1186/s13015-024-00267-1
Mahsa Farnia, Nadia Tahiri

The B cell lineage tree encapsulates the successive phases of B cell differentiation and maturation, transitioning from hematopoietic stem cells to mature, antibody-secreting cells within the immune system. Mathematically, this lineage can be conceptualized as an evolutionary tree, where each node represents a distinct stage in B cell development, and the edges reflect the differentiation pathways. To compare these lineage trees, a rigorous mathematical metric is essential. Analyzing B cell lineage trees mathematically and quantifying changes in lineage attributes over time necessitates a comparison methodology capable of accurately assessing and measuring these changes. Addressing the intricacies of multiple B cell lineage tree comparisons, this study introduces a novel metric that enhances the precision of comparative analysis. This metric is formulated on principles of metric theory and evolutionary biology, quantifying the dissimilarities between lineage trees by measuring branch length distance and weight. By providing a framework for systematically classifying lineage trees, this metric facilitates the development of predictive models that are crucial for the creation of targeted immunotherapy and vaccines. To validate the effectiveness of this new metric, synthetic datasets that mimic the complexity and variability of real B cell lineage structures are employed. We demonstrated the ability of the new metric method to accurately capture the evolutionary nuances of B cell lineages.

B 细胞系树概括了 B 细胞分化和成熟的连续阶段,从造血干细胞过渡到免疫系统中成熟的抗体分泌细胞。从数学角度看,这一谱系可概念化为一棵进化树,其中每个节点代表 B 细胞发育的一个不同阶段,而边缘则反映了分化途径。要比较这些系谱树,严格的数学度量是必不可少的。要对 B 细胞系树进行数学分析并量化系属性随时间发生的变化,就需要一种能够准确评估和衡量这些变化的比较方法。针对多 B 细胞系树比较的复杂性,本研究引入了一种新的度量方法,以提高比较分析的精确性。该指标是根据度量理论和进化生物学原理制定的,通过测量分支长度距离和权重来量化世系树之间的差异。通过提供一个对系谱树进行系统分类的框架,该指标有助于开发对创建靶向免疫疗法和疫苗至关重要的预测模型。为了验证这一新指标的有效性,我们采用了模拟真实 B 细胞系结构的复杂性和可变性的合成数据集。我们证明了新度量方法准确捕捉 B 细胞系进化细微差别的能力。
{"title":"New generalized metric based on branch length distance to compare B cell lineage trees.","authors":"Mahsa Farnia, Nadia Tahiri","doi":"10.1186/s13015-024-00267-1","DOIUrl":"10.1186/s13015-024-00267-1","url":null,"abstract":"<p><p>The B cell lineage tree encapsulates the successive phases of B cell differentiation and maturation, transitioning from hematopoietic stem cells to mature, antibody-secreting cells within the immune system. Mathematically, this lineage can be conceptualized as an evolutionary tree, where each node represents a distinct stage in B cell development, and the edges reflect the differentiation pathways. To compare these lineage trees, a rigorous mathematical metric is essential. Analyzing B cell lineage trees mathematically and quantifying changes in lineage attributes over time necessitates a comparison methodology capable of accurately assessing and measuring these changes. Addressing the intricacies of multiple B cell lineage tree comparisons, this study introduces a novel metric that enhances the precision of comparative analysis. This metric is formulated on principles of metric theory and evolutionary biology, quantifying the dissimilarities between lineage trees by measuring branch length distance and weight. By providing a framework for systematically classifying lineage trees, this metric facilitates the development of predictive models that are crucial for the creation of targeted immunotherapy and vaccines. To validate the effectiveness of this new metric, synthetic datasets that mimic the complexity and variability of real B cell lineage structures are employed. We demonstrated the ability of the new metric method to accurately capture the evolutionary nuances of B cell lineages.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"19 1","pages":"22"},"PeriodicalIF":1.5,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metric multidimensional scaling for large single-cell datasets using neural networks. 利用神经网络对大型单细胞数据集进行度量多维缩放。
IF 1 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-06-11 DOI: 10.1186/s13015-024-00265-3
Stefan Canzar, Van Hoan Do, Slobodan Jelić, Sören Laue, Domagoj Matijević, Tomislav Prusina

Metric multidimensional scaling is one of the classical methods for embedding data into low-dimensional Euclidean space. It creates the low-dimensional embedding by approximately preserving the pairwise distances between the input points. However, current state-of-the-art approaches only scale to a few thousand data points. For larger data sets such as those occurring in single-cell RNA sequencing experiments, the running time becomes prohibitively large and thus alternative methods such as PCA are widely used instead. Here, we propose a simple neural network-based approach for solving the metric multidimensional scaling problem that is orders of magnitude faster than previous state-of-the-art approaches, and hence scales to data sets with up to a few million cells. At the same time, it provides a non-linear mapping between high- and low-dimensional space that can place previously unseen cells in the same embedding.

度量多维缩放是将数据嵌入低维欧几里得空间的经典方法之一。它通过近似保留输入点之间的成对距离来创建低维嵌入。然而,目前最先进的方法只能对几千个数据点进行缩放。对于单细胞 RNA 测序实验等较大的数据集,运行时间会变得过长,因此 PCA 等替代方法被广泛使用。在这里,我们提出了一种基于神经网络的简单方法来解决度量多维缩放问题,这种方法比以往最先进的方法要快几个数量级,因此可扩展到多达几百万个细胞的数据集。同时,它还提供了高维空间和低维空间之间的非线性映射,可将以前未见过的单元格置于相同的嵌入中。
{"title":"Metric multidimensional scaling for large single-cell datasets using neural networks.","authors":"Stefan Canzar, Van Hoan Do, Slobodan Jelić, Sören Laue, Domagoj Matijević, Tomislav Prusina","doi":"10.1186/s13015-024-00265-3","DOIUrl":"10.1186/s13015-024-00265-3","url":null,"abstract":"<p><p>Metric multidimensional scaling is one of the classical methods for embedding data into low-dimensional Euclidean space. It creates the low-dimensional embedding by approximately preserving the pairwise distances between the input points. However, current state-of-the-art approaches only scale to a few thousand data points. For larger data sets such as those occurring in single-cell RNA sequencing experiments, the running time becomes prohibitively large and thus alternative methods such as PCA are widely used instead. Here, we propose a simple neural network-based approach for solving the metric multidimensional scaling problem that is orders of magnitude faster than previous state-of-the-art approaches, and hence scales to data sets with up to a few million cells. At the same time, it provides a non-linear mapping between high- and low-dimensional space that can place previously unseen cells in the same embedding.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"19 1","pages":"21"},"PeriodicalIF":1.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165904/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compression algorithm for colored de Bruijn graphs. 彩色德布鲁因图的压缩算法。
IF 1 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-05-26 DOI: 10.1186/s13015-024-00254-6
Amatur Rahman, Yoann Dufresne, Paul Medvedev

A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer assigned a set of colors. Colored de Bruijn graphs are used in a variety of applications, including variant calling, genome assembly, and database search. However, their size has posed a scalability challenge to algorithm developers and users. There have been numerous indexing data structures proposed that allow to store the graph compactly while supporting fast query operations. However, disk compression algorithms, which do not need to support queries on the compressed data and can thus be more space-efficient, have received little attention. The dearth of specialized compression tools has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we develop a new tool that compresses colored de Bruijn graphs to disk, building on previous ideas for compression of k-mer sets and indexing colored de Bruijn graphs. We test our tool, called ESS-color, on various datasets, including both sequencing data and whole genomes. ESS-color achieves better compression than all evaluated tools and all datasets, with no other tool able to consistently achieve less than 44% space overhead. The software is available at http://github.com/medvedevgroup/ESSColor .

彩色 de Bruijn 图(也称 k-mer 集)是一组 k-mer 的集合,每个 k-mer 都有一组颜色。彩色德布鲁因图可用于多种应用,包括变体调用、基因组组装和数据库搜索。然而,它们的大小给算法开发人员和用户带来了可扩展性的挑战。目前已经有许多索引数据结构被提出,它们可以紧凑地存储图,同时支持快速查询操作。然而,磁盘压缩算法却很少受到关注,因为这种算法不需要支持对压缩数据的查询,因此更节省空间。专业压缩工具的缺乏对工具开发者、工具用户和可重复性工作都是一种损害。在本文中,我们以之前的 k-mer 集压缩和彩色 de Bruijn 图索引的想法为基础,开发了一种将彩色 de Bruijn 图压缩到磁盘的新工具。我们在各种数据集(包括测序数据和全基因组)上测试了名为 ESS-color 的工具。ESS-color比所有评估过的工具和所有数据集都实现了更好的压缩效果,没有其他工具能持续实现低于44%的空间开销。该软件可在 http://github.com/medvedevgroup/ESSColor 上下载。
{"title":"Compression algorithm for colored de Bruijn graphs.","authors":"Amatur Rahman, Yoann Dufresne, Paul Medvedev","doi":"10.1186/s13015-024-00254-6","DOIUrl":"10.1186/s13015-024-00254-6","url":null,"abstract":"<p><p>A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer assigned a set of colors. Colored de Bruijn graphs are used in a variety of applications, including variant calling, genome assembly, and database search. However, their size has posed a scalability challenge to algorithm developers and users. There have been numerous indexing data structures proposed that allow to store the graph compactly while supporting fast query operations. However, disk compression algorithms, which do not need to support queries on the compressed data and can thus be more space-efficient, have received little attention. The dearth of specialized compression tools has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we develop a new tool that compresses colored de Bruijn graphs to disk, building on previous ideas for compression of k-mer sets and indexing colored de Bruijn graphs. We test our tool, called ESS-color, on various datasets, including both sequencing data and whole genomes. ESS-color achieves better compression than all evaluated tools and all datasets, with no other tool able to consistently achieve less than 44% space overhead. The software is available at http://github.com/medvedevgroup/ESSColor .</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"19 1","pages":"20"},"PeriodicalIF":1.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141155161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Algorithms for Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1