Pub Date : 2024-10-18DOI: 10.1007/s00012-024-00875-3
Ayşe Uyar
In this paper, type n lattice-ordered algebras are introduced and a characterization is given for those of type 0 and type 1. Moreover we investigate the question: Let A be a lattice-ordered algebra with unit element (e >0) in which every positive element has an inverse. Under what conditions A is lattice and algebra isomorphic to ({mathbb {R}}) ? We have shown that for certain algebras the question has a positive answer, generalizing thus a result of Scheffold. We also obtained a result similar to Edwards’ Theorem for normed lattice-ordered algebras.
本文介绍了 n 型格序代数,并给出了 0 型和 1 型格序代数的特征。此外,我们还研究了一个问题:让 A 是一个具有单位元素 (e>0)的格有序代数,其中每个正元素都有一个逆元素。在什么条件下,A 是与 ({mathbb {R}}) 同构的格与代数?我们证明了对某些代数来说,这个问题有一个肯定的答案,从而推广了谢福尔德的一个结果。我们还得到了一个与规范格序代数的爱德华兹定理类似的结果。
{"title":"Some remarks on type n lattice-ordered algebras and a question of Huijsmans","authors":"Ayşe Uyar","doi":"10.1007/s00012-024-00875-3","DOIUrl":"10.1007/s00012-024-00875-3","url":null,"abstract":"<div><p>In this paper, type <i>n</i> lattice-ordered algebras are introduced and a characterization is given for those of type 0 and type 1. Moreover we investigate the question: Let <i>A</i> be a lattice-ordered algebra with unit element <span>(e >0)</span> in which every positive element has an inverse. Under what conditions <i>A</i> is lattice and algebra isomorphic to <span>({mathbb {R}})</span> ? We have shown that for certain algebras the question has a positive answer, generalizing thus a result of Scheffold. We also obtained a result similar to Edwards’ Theorem for normed lattice-ordered algebras.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s00012-024-00874-4
Andrei A. Bulatov
In this paper we continue the study of edge-colored graphs associated with finite idempotent algebras initiated in [Bulatov, “Local structure of idempotent algebras I”, CoRR, abs/2006.09599, 2020.]. We prove stronger connectivity properties of such graphs that will allows us to demonstrate several useful structural features of subdirect products of idempotent algebras such as rectangularity and 2-decomposition.
{"title":"Graphs of finite algebras: maximality, rectangularity, and decomposition","authors":"Andrei A. Bulatov","doi":"10.1007/s00012-024-00874-4","DOIUrl":"10.1007/s00012-024-00874-4","url":null,"abstract":"<div><p>In this paper we continue the study of edge-colored graphs associated with finite idempotent algebras initiated in [Bulatov, “Local structure of idempotent algebras I”, CoRR, abs/2006.09599, 2020.]. We prove stronger connectivity properties of such graphs that will allows us to demonstrate several useful structural features of subdirect products of idempotent algebras such as rectangularity and 2-decomposition.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1007/s00012-024-00870-8
Ioannis Eleftheriadis
We characterise the slices of the category of graphs that are algebraically universal in terms of the structure of the slicing graph. In particular, we show that algebraic universality is obtained if, and only if, the slicing graph contains one of four fixed graphs as a subgraph.
{"title":"Universal slices of the category of graphs","authors":"Ioannis Eleftheriadis","doi":"10.1007/s00012-024-00870-8","DOIUrl":"10.1007/s00012-024-00870-8","url":null,"abstract":"<div><p>We characterise the slices of the category of graphs that are algebraically universal in terms of the structure of the slicing graph. In particular, we show that algebraic universality is obtained if, and only if, the slicing graph contains one of four fixed graphs as a subgraph.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00870-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1007/s00012-024-00871-7
Anna Avallone, Paolo Vitolo
We generalize to (hbox {d}_{text {0}})-algebras a result of Riečanová about the decomposition of a D-lattice by means of a family of central elements.
我们把里查诺娃(Riečanová)关于通过中心元素族分解 D 格的一个结果推广到了(hbox {d}_{text {0}})-格拉斯。
{"title":"Decomposition of (hbox {d}_{text {0}})-algebras","authors":"Anna Avallone, Paolo Vitolo","doi":"10.1007/s00012-024-00871-7","DOIUrl":"10.1007/s00012-024-00871-7","url":null,"abstract":"<div><p>We generalize to <span>(hbox {d}_{text {0}})</span>-algebras a result of Riečanová about the decomposition of a D-lattice by means of a family of central elements.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1007/s00012-024-00873-5
Jelena Jovanović, Branimir Šešelja, Andreja Tepavčević
In the framework of weak congruence lattices, many classes of groups have been characterized up to now, in completely lattice-theoretic terms. In this note, the center of the group is captured lattice-theoretically and nilpotent groups are characterized by lattice properties.
{"title":"Nilpotent groups in lattice framework","authors":"Jelena Jovanović, Branimir Šešelja, Andreja Tepavčević","doi":"10.1007/s00012-024-00873-5","DOIUrl":"10.1007/s00012-024-00873-5","url":null,"abstract":"<div><p>In the framework of weak congruence lattices, many classes of groups have been characterized up to now, in completely lattice-theoretic terms. In this note, the center of the group is captured lattice-theoretically and nilpotent groups are characterized by lattice properties.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1007/s00012-024-00867-3
Thomas Gobet, Baptiste Rognerud
We study two families of lattices whose number of elements are given by the numbers in even (respectively odd) positions in the Fibonacci sequence. The even Fibonacci lattice arises as the lattice of simple elements of a Garside monoid partially ordered by left-divisibility, and the odd Fibonacci lattice is an order ideal in the even one. We give a combinatorial proof of the lattice property, relying on a description of words for the Garside element in terms of Schröder trees, and on a recursive description of the even Fibonacci lattice. This yields an explicit formula to calculate meets and joins in the lattice. As a byproduct we also obtain that the number of words for the Garside element is given by a little Schröder number.
{"title":"Odd and even Fibonacci lattices arising from a Garside monoid","authors":"Thomas Gobet, Baptiste Rognerud","doi":"10.1007/s00012-024-00867-3","DOIUrl":"10.1007/s00012-024-00867-3","url":null,"abstract":"<div><p>We study two families of lattices whose number of elements are given by the numbers in even (respectively odd) positions in the Fibonacci sequence. The even Fibonacci lattice arises as the lattice of simple elements of a Garside monoid partially ordered by left-divisibility, and the odd Fibonacci lattice is an order ideal in the even one. We give a combinatorial proof of the lattice property, relying on a description of words for the Garside element in terms of Schröder trees, and on a recursive description of the even Fibonacci lattice. This yields an explicit formula to calculate meets and joins in the lattice. As a byproduct we also obtain that the number of words for the Garside element is given by a little Schröder number.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1007/s00012-024-00869-1
Richard Garner
In 1990, Johnstone gave a syntactic characterisation of the equational theories whose associated varieties are cartesian closed. Among such theories are all unary theories—whose models are sets equipped with an action by a monoid M—and all hyperaffine theories—whose models are sets with an action by a Boolean algebra B. We improve on Johnstone’s result by showing that an equational theory is cartesian closed just when its operations have a unique hyperaffine–unary decomposition. It follows that any non-degenerate cartesian closed variety is a variety of sets equipped with compatible actions by a monoid M and a Boolean algebra B; this is the classification theorem of the title.
1990 年,约翰斯通给出了等式理论的句法特征,这些等式理论的相关品种都是卡特西封闭的。在这些理论中,有所有一元理论(其模型是具有单元 M 作用的集合),也有所有超参数理论(其模型是具有布尔代数 B 作用的集合)。我们对约翰斯通的结果进行了改进,证明只有当等式理论的运算具有唯一的超参数一元分解时,该等式理论才是卡特封闭的。由此可知,任何非退化的卡方闭集都是由单元 M 和布尔代数 B 的相容运算组成的集合集合;这就是标题中的分类定理。
{"title":"Cartesian closed varieties I: the classification theorem","authors":"Richard Garner","doi":"10.1007/s00012-024-00869-1","DOIUrl":"10.1007/s00012-024-00869-1","url":null,"abstract":"<div><p>In 1990, Johnstone gave a syntactic characterisation of the equational theories whose associated varieties are cartesian closed. Among such theories are all <i>unary</i> theories—whose models are sets equipped with an action by a monoid <i>M</i>—and all <i>hyperaffine</i> theories—whose models are sets with an action by a Boolean algebra <i>B</i>. We improve on Johnstone’s result by showing that an equational theory is cartesian closed just when its operations have a unique hyperaffine–unary decomposition. It follows that any non-degenerate cartesian closed variety is a variety of sets equipped with compatible actions by a monoid <i>M</i> and a Boolean algebra <i>B</i>; this is the classification theorem of the title.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00869-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1007/s00012-024-00868-2
Wolfgang Poiger
We provide a simple natural duality for the varieties generated by the negation- and implication-free reduct of a finite MV-chain. We study these varieties through the dual equivalences thus obtained. For example, we fully characterize their algebraically closed, existentially closed and injective members. We also explore the relationship between this natural duality and Priestley duality in terms of distributive skeletons and Priestley powers.
{"title":"Natural dualities for varieties generated by finite positive MV-chains","authors":"Wolfgang Poiger","doi":"10.1007/s00012-024-00868-2","DOIUrl":"10.1007/s00012-024-00868-2","url":null,"abstract":"<div><p>We provide a simple natural duality for the varieties generated by the negation- and implication-free reduct of a finite MV-chain. We study these varieties through the dual equivalences thus obtained. For example, we fully characterize their algebraically closed, existentially closed and injective members. We also explore the relationship between this natural duality and Priestley duality in terms of distributive skeletons and Priestley powers.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1007/s00012-024-00866-4
Anvar M. Nurakunov
A quasivariety (mathfrak N) is called relative congruence principal if, for every algebra (Ain mathfrak N), every compact (mathfrak N)-congruence on A is a principal (mathfrak N)-congruence. We characterize relative congruence principal quasivarieties in terms of one identity and two quasi-identities. We will use the characterization to show that there exists a continuum of relative congruence principal quasivarieties of algebras of a signature (sigma ), provided (sigma ) contains at least one operation of arity greater than 1. Several examples are provided.
{"title":"Quasivarieties of algebras whose compact relative congruences are principal","authors":"Anvar M. Nurakunov","doi":"10.1007/s00012-024-00866-4","DOIUrl":"10.1007/s00012-024-00866-4","url":null,"abstract":"<div><p>A quasivariety <span>(mathfrak N)</span> is called <i>relative congruence principal</i> if, for every algebra <span>(Ain mathfrak N)</span>, every compact <span>(mathfrak N)</span>-congruence on <i>A</i> is a principal <span>(mathfrak N)</span>-congruence. We characterize relative congruence principal quasivarieties in terms of one identity and two quasi-identities. We will use the characterization to show that there exists a continuum of relative congruence principal quasivarieties of algebras of a signature <span>(sigma )</span>, provided <span>(sigma )</span> contains at least one operation of arity greater than 1. Several examples are provided.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-12DOI: 10.1007/s00012-024-00864-6
Tim Stokes
The override operation (sqcup ) is a natural one in computer science, and has connections with other areas of mathematics such as hyperplane arrangements. For arbitrary functions f and g, (fsqcup g) is the function with domain ({{,textrm{dom},}}(f)cup {{,textrm{dom},}}(g)) that agrees with f on ({{,textrm{dom},}}(f)) and with g on ({{,textrm{dom},}}(g) backslash {{,textrm{dom},}}(f)). Jackson and the author have shown that there is no finite axiomatisation of algebras of functions of signature ((sqcup )). But adding operations (such as update) to this minimal signature can lead to finite axiomatisations. For the functional signature ((sqcup ,backslash )) where (backslash ) is set-theoretic difference, Cirulis has given a finite equational axiomatisation as subtraction o-semilattices. Define (fcurlyvee g=(fsqcup g)cap (gsqcup f)) for all functions f and g; this is the largest domain restriction of the binary relation (fcup g) that gives a partial function. Now (fcap g=fbackslash (fbackslash g)) and (fsqcup g=fcurlyvee (fcurlyvee g)) for all functions f, g, so the signatures ((curlyvee )) and ((sqcup ,cap )) are both intermediate between ((sqcup )) and ((sqcup ,backslash )) in expressive power. We show that each is finitely axiomatised, with the former giving a proper quasivariety and the latter the variety of associative distributive o-semilattices in the sense of Cirulis.
{"title":"Override and restricted union for partial functions","authors":"Tim Stokes","doi":"10.1007/s00012-024-00864-6","DOIUrl":"10.1007/s00012-024-00864-6","url":null,"abstract":"<div><p>The <i>override</i> operation <span>(sqcup )</span> is a natural one in computer science, and has connections with other areas of mathematics such as hyperplane arrangements. For arbitrary functions <i>f</i> and <i>g</i>, <span>(fsqcup g)</span> is the function with domain <span>({{,textrm{dom},}}(f)cup {{,textrm{dom},}}(g))</span> that agrees with <i>f</i> on <span>({{,textrm{dom},}}(f))</span> and with <i>g</i> on <span>({{,textrm{dom},}}(g) backslash {{,textrm{dom},}}(f))</span>. Jackson and the author have shown that there is no finite axiomatisation of algebras of functions of signature <span>((sqcup ))</span>. But adding operations (such as <i>update</i>) to this minimal signature can lead to finite axiomatisations. For the functional signature <span>((sqcup ,backslash ))</span> where <span>(backslash )</span> is set-theoretic difference, Cirulis has given a finite equational axiomatisation as subtraction o-semilattices. Define <span>(fcurlyvee g=(fsqcup g)cap (gsqcup f))</span> for all functions <i>f</i> and <i>g</i>; this is the largest domain restriction of the binary relation <span>(fcup g)</span> that gives a partial function. Now <span>(fcap g=fbackslash (fbackslash g))</span> and <span>(fsqcup g=fcurlyvee (fcurlyvee g))</span> for all functions <i>f</i>, <i>g</i>, so the signatures <span>((curlyvee ))</span> and <span>((sqcup ,cap ))</span> are both intermediate between <span>((sqcup ))</span> and <span>((sqcup ,backslash ))</span> in expressive power. We show that each is finitely axiomatised, with the former giving a proper quasivariety and the latter the variety of associative distributive o-semilattices in the sense of Cirulis.</p></div>","PeriodicalId":50827,"journal":{"name":"Algebra Universalis","volume":"85 4","pages":""},"PeriodicalIF":0.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00012-024-00864-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}