Pub Date : 2024-01-01Epub Date: 2024-03-12DOI: 10.1016/bs.apar.2024.02.003
Jean-François Doherty, Tahnee Ames, Leisl Imani Brewster, Jonathan Chiang, Elsa Cyr, Cameron R Kelsey, Jeehan Phillip Lee, Bingzong Liu, Ivan Hok Yin Lo, Gurleen K Nirwal, Yunusa Garba Mohammed, Orna Phelan, Parsa Seyfourian, Danica Marie Shannon, Nicholas Kristoff Tochor, Benjamin John Matthews
For over a century, vector ecology has been a mainstay of vector-borne disease control. Much of this research has focused on the sensory ecology of blood-feeding arthropods (black flies, mosquitoes, ticks, etc.) with terrestrial vertebrate hosts. Of particular interest are the cues and sensory systems that drive host seeking and host feeding behaviours as they are critical for a vector to locate and feed from a host. An important yet overlooked component of arthropod vector ecology are the phenotypic changes observed in infected vectors that increase disease transmission. While our fundamental understanding of sensory mechanisms in disease vectors has drastically increased due to recent advances in genome engineering, for example, the advent of CRISPR-Cas9, and high-throughput "big data" approaches (genomics, proteomics, transcriptomics, etc.), we still do not know if and how parasites manipulate vector behaviour. Here, we review the latest research on arthropod vector sensory systems and propose key mechanisms that disease agents may alter to increase transmission.
{"title":"An update and review of arthropod vector sensory systems: Potential targets for behavioural manipulation by parasites and other disease agents.","authors":"Jean-François Doherty, Tahnee Ames, Leisl Imani Brewster, Jonathan Chiang, Elsa Cyr, Cameron R Kelsey, Jeehan Phillip Lee, Bingzong Liu, Ivan Hok Yin Lo, Gurleen K Nirwal, Yunusa Garba Mohammed, Orna Phelan, Parsa Seyfourian, Danica Marie Shannon, Nicholas Kristoff Tochor, Benjamin John Matthews","doi":"10.1016/bs.apar.2024.02.003","DOIUrl":"10.1016/bs.apar.2024.02.003","url":null,"abstract":"<p><p>For over a century, vector ecology has been a mainstay of vector-borne disease control. Much of this research has focused on the sensory ecology of blood-feeding arthropods (black flies, mosquitoes, ticks, etc.) with terrestrial vertebrate hosts. Of particular interest are the cues and sensory systems that drive host seeking and host feeding behaviours as they are critical for a vector to locate and feed from a host. An important yet overlooked component of arthropod vector ecology are the phenotypic changes observed in infected vectors that increase disease transmission. While our fundamental understanding of sensory mechanisms in disease vectors has drastically increased due to recent advances in genome engineering, for example, the advent of CRISPR-Cas9, and high-throughput \"big data\" approaches (genomics, proteomics, transcriptomics, etc.), we still do not know if and how parasites manipulate vector behaviour. Here, we review the latest research on arthropod vector sensory systems and propose key mechanisms that disease agents may alter to increase transmission.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"124 ","pages":"57-89"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-20DOI: 10.1016/bs.apar.2023.12.002
Adrian J Wolstenholme, Erik C Andersen, Shivani Choudhary, Friederike Ebner, Susanne Hartmann, Lindy Holden-Dye, Sudhanva S Kashyap, Jürgen Krücken, Richard J Martin, Ankur Midha, Peter Nejsum, Cedric Neveu, Alan P Robertson, Georg von Samson-Himmelstjerna, Robert Walker, Jianbin Wang, Bradley J Whitehead, Paul D E Williams
The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.
蛔虫是一大类寄生线虫,可感染多种动物物种。在人类中,它们会导致被忽视的贫困疾病;许多动物寄生虫也会导致人畜共患病。控制措施包括卫生和驱虫治疗,但这些措施并不总是适当或有效的,因此需要不断寻找更好的方法来降低这些感染对人类、福利和经济造成的损失。为此,Le Studium 高级研究所组织了一次为期两天的会议,以确定我们在了解蛔虫寄生方面存在的主要差距,从而确定研究重点,改进控制工作。与会者确定了未来重点关注的几个关键领域,包括基因组分析的进展和模式生物(尤其是秀丽隐杆线虫)的使用、对宿主与寄生虫(以及寄生虫与寄生虫之间)交流的复杂性的更透彻理解、新型驱虫药的探索以及有效疫苗的开发。与会者同意在未来努力保持非正式联系,为合作项目奠定基础,并合作组织未来的会议和研讨会,促进蛔虫研究。
{"title":"Getting around the roundworms: Identifying knowledge gaps and research priorities for the ascarids.","authors":"Adrian J Wolstenholme, Erik C Andersen, Shivani Choudhary, Friederike Ebner, Susanne Hartmann, Lindy Holden-Dye, Sudhanva S Kashyap, Jürgen Krücken, Richard J Martin, Ankur Midha, Peter Nejsum, Cedric Neveu, Alan P Robertson, Georg von Samson-Himmelstjerna, Robert Walker, Jianbin Wang, Bradley J Whitehead, Paul D E Williams","doi":"10.1016/bs.apar.2023.12.002","DOIUrl":"10.1016/bs.apar.2023.12.002","url":null,"abstract":"<p><p>The ascarids are a large group of parasitic nematodes that infect a wide range of animal species. In humans, they cause neglected diseases of poverty; many animal parasites also cause zoonotic infections in people. Control measures include hygiene and anthelmintic treatments, but they are not always appropriate or effective and this creates a continuing need to search for better ways to reduce the human, welfare and economic costs of these infections. To this end, Le Studium Institute of Advanced Studies organized a two-day conference to identify major gaps in our understanding of ascarid parasites with a view to setting research priorities that would allow for improved control. The participants identified several key areas for future focus, comprising of advances in genomic analysis and the use of model organisms, especially Caenorhabditis elegans, a more thorough appreciation of the complexity of host-parasite (and parasite-parasite) communications, a search for novel anthelmintic drugs and the development of effective vaccines. The participants agreed to try and maintain informal links in the future that could form the basis for collaborative projects, and to co-operate to organize future meetings and workshops to promote ascarid research.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"123 ","pages":"51-123"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-08-30DOI: 10.1016/bs.apar.2024.07.001
Daniel Sojka, Pavla Šnebergerová
Over the last decade, research on the most studied parasite, Plasmodium falciparum, has disclosed significant findings in protease research. Detailed descriptions of the individual roles of protease isoenzymes from various protease classes encoded by the parasite genome have been elucidated, along with their functional and biochemical characterizations. These insights have enabled the development of innovative chemotherapy using low molecular weight inhibitors targeting specific molecular sites. Progress has been made in understanding the proteolytic cascade associated with the apical complex, particularly the roles of aspartyl proteases plasmepsins IX and X as master regulators. Additionally, advancements in direct and alternative methods of proteasome inhibition and expression regulation have been achieved. Research on digestive/food vacuole-associated proteases, with a focus on essential metalloproteases, has also seen significant developments. The rise of extensive genomic datasets and functional genomic tools for other parasitic organisms now allows these approaches to be applied to the study and treatment of other, less known parasitic diseases, aiming to uncover specific biological mechanisms and develop innovative, less toxic chemotherapies.
在过去十年中,对恶性疟原虫这一研究最多的寄生虫的研究揭示了蛋白酶研究的重大发现。研究人员详细描述了寄生虫基因组编码的各种蛋白酶同工酶的作用,以及它们的功能和生化特性。有了这些认识,就能利用针对特定分子位点的低分子量抑制剂开发创新的化疗方法。在了解与顶端复合体相关的蛋白水解级联方面也取得了进展,特别是天冬氨酰蛋白酶 plasmepsins IX 和 X 作为主调节剂的作用。此外,蛋白酶体抑制和表达调控的直接和替代方法也取得了进展。以基本金属蛋白酶为重点的消化/食物液泡相关蛋白酶研究也取得了重大进展。随着针对其他寄生生物的大量基因组数据集和功能基因组工具的兴起,现在可以将这些方法应用于研究和治疗其他鲜为人知的寄生虫病,目的是揭示特定的生物机制,开发创新的、毒性较低的化学疗法。
{"title":"Advances in protease inhibition-based chemotherapy: A decade of insights from Malaria research.","authors":"Daniel Sojka, Pavla Šnebergerová","doi":"10.1016/bs.apar.2024.07.001","DOIUrl":"https://doi.org/10.1016/bs.apar.2024.07.001","url":null,"abstract":"<p><p>Over the last decade, research on the most studied parasite, Plasmodium falciparum, has disclosed significant findings in protease research. Detailed descriptions of the individual roles of protease isoenzymes from various protease classes encoded by the parasite genome have been elucidated, along with their functional and biochemical characterizations. These insights have enabled the development of innovative chemotherapy using low molecular weight inhibitors targeting specific molecular sites. Progress has been made in understanding the proteolytic cascade associated with the apical complex, particularly the roles of aspartyl proteases plasmepsins IX and X as master regulators. Additionally, advancements in direct and alternative methods of proteasome inhibition and expression regulation have been achieved. Research on digestive/food vacuole-associated proteases, with a focus on essential metalloproteases, has also seen significant developments. The rise of extensive genomic datasets and functional genomic tools for other parasitic organisms now allows these approaches to be applied to the study and treatment of other, less known parasitic diseases, aiming to uncover specific biological mechanisms and develop innovative, less toxic chemotherapies.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"126 ","pages":"205-227"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-04-14DOI: 10.1016/bs.apar.2024.03.001
Matthew S Moser, Elissa A Hallem
Parasitic nematodes infect over 2 billion individuals worldwide, primarily in low-resource areas, and are responsible for several chronic and potentially deadly diseases. Throughout their life cycle, these parasites are thought to use astacin metalloproteases, a subfamily of zinc-containing metalloendopeptidases, for processes such as skin penetration, molting, and tissue migration. Here, we review the known functions of astacins in human-infective, soil-transmitted parasitic nematodes - including the hookworms Necator americanus and Ancylostoma duodenale, the threadworm Strongyloides stercoralis, the giant roundworm Ascaris lumbricoides, and the whipworm Trichuris trichiura - as well as the human-infective, vector-borne filarial nematodes Wuchereria bancrofti, Onchocerca volvulus, and Brugia malayi. We also review astacin function in parasitic nematodes that infect other mammalian hosts and discuss the potential of astacins as anthelmintic drug targets. Finally, we highlight the molecular and genetic tools that are now available for further exploration of astacin function and discuss how a better understanding of astacin function in human-parasitic nematodes could lead to new avenues for nematode control and drug therapies.
{"title":"Astacin metalloproteases in human-parasitic nematodes.","authors":"Matthew S Moser, Elissa A Hallem","doi":"10.1016/bs.apar.2024.03.001","DOIUrl":"https://doi.org/10.1016/bs.apar.2024.03.001","url":null,"abstract":"<p><p>Parasitic nematodes infect over 2 billion individuals worldwide, primarily in low-resource areas, and are responsible for several chronic and potentially deadly diseases. Throughout their life cycle, these parasites are thought to use astacin metalloproteases, a subfamily of zinc-containing metalloendopeptidases, for processes such as skin penetration, molting, and tissue migration. Here, we review the known functions of astacins in human-infective, soil-transmitted parasitic nematodes - including the hookworms Necator americanus and Ancylostoma duodenale, the threadworm Strongyloides stercoralis, the giant roundworm Ascaris lumbricoides, and the whipworm Trichuris trichiura - as well as the human-infective, vector-borne filarial nematodes Wuchereria bancrofti, Onchocerca volvulus, and Brugia malayi. We also review astacin function in parasitic nematodes that infect other mammalian hosts and discuss the potential of astacins as anthelmintic drug targets. Finally, we highlight the molecular and genetic tools that are now available for further exploration of astacin function and discuss how a better understanding of astacin function in human-parasitic nematodes could lead to new avenues for nematode control and drug therapies.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"126 ","pages":"177-204"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-09-25DOI: 10.1016/bs.apar.2024.08.001
Gunjan Arora, Jiří Černý
Malaria remains a major health hazard for humans, despite the availability of efficacious antimalarial drugs and other interventions. Given that the disease is often deadly for children under 5 years and pregnant women living in malaria-endemic areas, an efficacious vaccine to prevent transmission and clinical disease would be ideal. Plasmodium, the causative agent of malaria, uses proteases and protease inhibitors to control and process to invade host, modulate host immunity, and for pathogenesis. Plasmodium parasites rely on these proteases for their development and survival, including feeding their metabolic needs and invasion of both mosquito and human tissues, and have thus been explored as potential targets for prophylaxis. In this chapter, we have discussed the potential of proteases like ROM4, SUB2, SERA4, SERA5, and others as vaccine candidates. We have also discussed the role of some protease inhibitors of plasmodium and mosquito origin. Inhibition of plasmodium proteases can interrupt the parasite development at many different stages therefore understanding their function is key to developing new drugs and malaria vaccines.
{"title":"Plasmodium proteases and their role in development of Malaria vaccines.","authors":"Gunjan Arora, Jiří Černý","doi":"10.1016/bs.apar.2024.08.001","DOIUrl":"10.1016/bs.apar.2024.08.001","url":null,"abstract":"<p><p>Malaria remains a major health hazard for humans, despite the availability of efficacious antimalarial drugs and other interventions. Given that the disease is often deadly for children under 5 years and pregnant women living in malaria-endemic areas, an efficacious vaccine to prevent transmission and clinical disease would be ideal. Plasmodium, the causative agent of malaria, uses proteases and protease inhibitors to control and process to invade host, modulate host immunity, and for pathogenesis. Plasmodium parasites rely on these proteases for their development and survival, including feeding their metabolic needs and invasion of both mosquito and human tissues, and have thus been explored as potential targets for prophylaxis. In this chapter, we have discussed the potential of proteases like ROM4, SUB2, SERA4, SERA5, and others as vaccine candidates. We have also discussed the role of some protease inhibitors of plasmodium and mosquito origin. Inhibition of plasmodium proteases can interrupt the parasite development at many different stages therefore understanding their function is key to developing new drugs and malaria vaccines.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"126 ","pages":"253-273"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-08DOI: 10.1016/bs.apar.2024.02.002
Rafael Toledo, Paola Cociancic, Emma Fiallos, J Guillermo Esteban, Carla Muñoz-Antoli
Intestinal trematodes constitute a major group of helminths that parasitize humans and animals with relevant morbidity and mortality. Despite the importance of the intestinal trematodes in medical and veterinary sciences, immunology and pathology of these helminth infections have been neglected for years. Apart from the work focused on the members of the family Echnistomatidae, there are only very isolated and sporadic studies on the representatives of other families of digeneans, which makes a compilation of all these studies necessary. In the present review, the most salient literature on the immunology and pathology of intestinal trematodes in their definitive hosts in examined. Emphasis will be placed on members of the echinostomatidae family, since it is the group in which the most work has been carried out. However, we also review the information on selected species of the families Brachylaimidae, Diplostomidae, Gymnophallidae, and Heterophyidae. For most of these families, coverage is considered under the following headings: (i) Background; (ii) Pathology of the infection; (iii) Immunology of the infection; and (iv) Human infections.
{"title":"Immunology and pathology of echinostomes and other intestinal trematodes.","authors":"Rafael Toledo, Paola Cociancic, Emma Fiallos, J Guillermo Esteban, Carla Muñoz-Antoli","doi":"10.1016/bs.apar.2024.02.002","DOIUrl":"10.1016/bs.apar.2024.02.002","url":null,"abstract":"<p><p>Intestinal trematodes constitute a major group of helminths that parasitize humans and animals with relevant morbidity and mortality. Despite the importance of the intestinal trematodes in medical and veterinary sciences, immunology and pathology of these helminth infections have been neglected for years. Apart from the work focused on the members of the family Echnistomatidae, there are only very isolated and sporadic studies on the representatives of other families of digeneans, which makes a compilation of all these studies necessary. In the present review, the most salient literature on the immunology and pathology of intestinal trematodes in their definitive hosts in examined. Emphasis will be placed on members of the echinostomatidae family, since it is the group in which the most work has been carried out. However, we also review the information on selected species of the families Brachylaimidae, Diplostomidae, Gymnophallidae, and Heterophyidae. For most of these families, coverage is considered under the following headings: (i) Background; (ii) Pathology of the infection; (iii) Immunology of the infection; and (iv) Human infections.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"124 ","pages":"1-55"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-06-26DOI: 10.1016/bs.apar.2024.06.001
Andy Hardy
As we strive towards the ambitious goal of malaria elimination, we must embrace integrated strategies and interventions. Like many diseases, malaria is heterogeneously distributed. This inherent spatial component means that geography and geospatial data is likely to have an important role in malaria control strategies. For instance, focussing interventions in areas where malaria risk is highest is likely to provide more cost-effective malaria control programmes. Equally, many malaria vector control strategies, particularly interventions like larval source management, would benefit from accurate maps of malaria vector habitats - sources of water that are used for malarial mosquito oviposition and larval development. In many landscapes, particularly in rural areas, the formation and persistence of these habitats is controlled by geographical factors, notably those related to hydrology. This is especially true for malaria vector species like Anopheles funestsus that show a preference for more permanent, often naturally occurring water sources like small rivers and spring-fed ponds. Previous work has embraced geographical concepts, techniques, and geospatial data for studying malaria risk and vector habitats. But there is much to be learnt if we are to fully exploit what the broader geographical discipline can offer in terms of operational malaria control, particularly in the face of a changing climate. This chapter outlines potential new directions related to several geographical concepts, data sources and analytical approaches, including terrain analysis, satellite imagery, drone technology and field-based observations. These directions are discussed within the context of designing new protocols and procedures that could be readily deployed within malaria control programmes, particularly those within sub-Saharan Africa, with a particular focus on experiences in the Kilombero Valley and the Zanzibar Archipelago, United Republic of Tanzania.
{"title":"New directions for malaria vector control using geography and geospatial analysis.","authors":"Andy Hardy","doi":"10.1016/bs.apar.2024.06.001","DOIUrl":"https://doi.org/10.1016/bs.apar.2024.06.001","url":null,"abstract":"<p><p>As we strive towards the ambitious goal of malaria elimination, we must embrace integrated strategies and interventions. Like many diseases, malaria is heterogeneously distributed. This inherent spatial component means that geography and geospatial data is likely to have an important role in malaria control strategies. For instance, focussing interventions in areas where malaria risk is highest is likely to provide more cost-effective malaria control programmes. Equally, many malaria vector control strategies, particularly interventions like larval source management, would benefit from accurate maps of malaria vector habitats - sources of water that are used for malarial mosquito oviposition and larval development. In many landscapes, particularly in rural areas, the formation and persistence of these habitats is controlled by geographical factors, notably those related to hydrology. This is especially true for malaria vector species like Anopheles funestsus that show a preference for more permanent, often naturally occurring water sources like small rivers and spring-fed ponds. Previous work has embraced geographical concepts, techniques, and geospatial data for studying malaria risk and vector habitats. But there is much to be learnt if we are to fully exploit what the broader geographical discipline can offer in terms of operational malaria control, particularly in the face of a changing climate. This chapter outlines potential new directions related to several geographical concepts, data sources and analytical approaches, including terrain analysis, satellite imagery, drone technology and field-based observations. These directions are discussed within the context of designing new protocols and procedures that could be readily deployed within malaria control programmes, particularly those within sub-Saharan Africa, with a particular focus on experiences in the Kilombero Valley and the Zanzibar Archipelago, United Republic of Tanzania.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"125 ","pages":"1-52"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-18DOI: 10.1016/bs.apar.2023.12.001
Mary Lorraine S Mationg, Gail M Williams, Veronica L Tallo, Remigio M Olveda, Donald P McManus, Donald E Stewart, Darren J Gray
Soil-transmitted helminths continue to be a serious problem causing disease and morbidity globally. Children, mostly school-aged, are more at risk of these infections. The main strategy for control remains to be the mass drug administration (MDA) of antihelminthic drugs. With the limitation of MDA to prevent re-infection, the need for additional approaches such as hygiene education and improvements in water, sanitation and hygiene (WASH) infrastructure are required. Although the importance of health education as a crucial component of an integrated approaches to STH control is highlighted, this component has often been disregarded because the other more complex solutions have been the focus of most studies and programmes. We performed literature searches from four bibliographic databases - Scopus, PubMed, Web of Science and Cochrane Library - to determine availability of studies on the impact of health education interventions targeting STH infections on schoolchildren in Southeast Asia. Our review found only three studies that evaluated health education interventions targeting children. The current lack of evidence in this area suggests the need for more studies assessing the impact of health education intervention for STH control. A successful health education programme for STH called "The Magic Glasses" has been developed targeting schoolchildren in China and the Philippines. This public health intervention displayed significant impact in terms of improving knowledge, attitude and practices, reducing prevalence of STH infections in schoolchildren and encouraging compliance to MDA. This article details the successes and benefits of the Magic Glasses programme as a promising control tool for STH in the Southeast Asian region.
{"title":"A review of health education activities targeting schoolchildren for the control of soil-transmitted helminthiasis in Southeast Asia, with emphasis upon the Magic Glasses approach.","authors":"Mary Lorraine S Mationg, Gail M Williams, Veronica L Tallo, Remigio M Olveda, Donald P McManus, Donald E Stewart, Darren J Gray","doi":"10.1016/bs.apar.2023.12.001","DOIUrl":"10.1016/bs.apar.2023.12.001","url":null,"abstract":"<p><p>Soil-transmitted helminths continue to be a serious problem causing disease and morbidity globally. Children, mostly school-aged, are more at risk of these infections. The main strategy for control remains to be the mass drug administration (MDA) of antihelminthic drugs. With the limitation of MDA to prevent re-infection, the need for additional approaches such as hygiene education and improvements in water, sanitation and hygiene (WASH) infrastructure are required. Although the importance of health education as a crucial component of an integrated approaches to STH control is highlighted, this component has often been disregarded because the other more complex solutions have been the focus of most studies and programmes. We performed literature searches from four bibliographic databases - Scopus, PubMed, Web of Science and Cochrane Library - to determine availability of studies on the impact of health education interventions targeting STH infections on schoolchildren in Southeast Asia. Our review found only three studies that evaluated health education interventions targeting children. The current lack of evidence in this area suggests the need for more studies assessing the impact of health education intervention for STH control. A successful health education programme for STH called \"The Magic Glasses\" has been developed targeting schoolchildren in China and the Philippines. This public health intervention displayed significant impact in terms of improving knowledge, attitude and practices, reducing prevalence of STH infections in schoolchildren and encouraging compliance to MDA. This article details the successes and benefits of the Magic Glasses programme as a promising control tool for STH in the Southeast Asian region.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"123 ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-09-20DOI: 10.1016/bs.apar.2024.07.002
Martin Horn, Lucia Bieliková, Andrea Vostoupalová, Jakub Švéda, Michael Mareš
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
{"title":"An update on proteases and protease inhibitors from trematodes.","authors":"Martin Horn, Lucia Bieliková, Andrea Vostoupalová, Jakub Švéda, Michael Mareš","doi":"10.1016/bs.apar.2024.07.002","DOIUrl":"https://doi.org/10.1016/bs.apar.2024.07.002","url":null,"abstract":"<p><p>Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"126 ","pages":"97-176"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-06DOI: 10.1016/bs.apar.2024.01.001
Dennis Imhof, Kai Pascal Alexander Hänggeli, Maria Cristina Ferreira De Sousa, Anitha Vigneswaran, Larissa Hofmann, Yosra Amdouni, Ghalia Boubaker, Joachim Müller, Andrew Hemphill
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
{"title":"Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead.","authors":"Dennis Imhof, Kai Pascal Alexander Hänggeli, Maria Cristina Ferreira De Sousa, Anitha Vigneswaran, Larissa Hofmann, Yosra Amdouni, Ghalia Boubaker, Joachim Müller, Andrew Hemphill","doi":"10.1016/bs.apar.2024.01.001","DOIUrl":"10.1016/bs.apar.2024.01.001","url":null,"abstract":"<p><p>Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.</p>","PeriodicalId":50854,"journal":{"name":"Advances in Parasitology","volume":"124 ","pages":"91-154"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}