Amina Bellil, K. Guenda, N. Aydin, Peihan Liu, T. Aaron Gulliver
{"title":"Constacyclic and quasi-twisted codes over $ mathbb{Z}_{q}[u]/langle u^{2}-1rangle $ and new $ mathbb{Z}_4 $-linear codes","authors":"Amina Bellil, K. Guenda, N. Aydin, Peihan Liu, T. Aaron Gulliver","doi":"10.3934/amc.2023026","DOIUrl":"https://doi.org/10.3934/amc.2023026","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"20 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84534616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constructions of mismatched binary periodic complementary pairs","authors":"Lina Shi, Ruibin Ren, Yang Yang","doi":"10.3934/amc.2023006","DOIUrl":"https://doi.org/10.3934/amc.2023006","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"94 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73053738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Let begin{document}$ G_2(q) $end{document} be a Chevalley group of type begin{document}$ G_2 $end{document} over a finite field begin{document}$ mathbb{F}_q $end{document}. Considering the begin{document}$ G_2(q) $end{document}-primitive action of rank begin{document}$ 3 $end{document} on the set of begin{document}$ frac{q^3(q^3-1)}{2} $end{document} hyperplanes of type begin{document}$ O_{6}^{-}(q) $end{document} in the begin{document}$ 7 $end{document}-dimensional orthogonal space begin{document}$ {{rm{PG}}}(7, q) $end{document}, we study the designs, codes, and some related geometric structures. We obtained the main parameters of the codes, the full automorphism groups of these structures, and geometric descriptions of the classes of minimum weight codewords.
Let begin{document}$ G_2(q) $end{document} be a Chevalley group of type begin{document}$ G_2 $end{document} over a finite field begin{document}$ mathbb{F}_q $end{document}. Considering the begin{document}$ G_2(q) $end{document}-primitive action of rank begin{document}$ 3 $end{document} on the set of begin{document}$ frac{q^3(q^3-1)}{2} $end{document} hyperplanes of type begin{document}$ O_{6}^{-}(q) $end{document} in the begin{document}$ 7 $end{document}-dimensional orthogonal space begin{document}$ {{rm{PG}}}(7, q) $end{document}, we study the designs, codes, and some related geometric structures. We obtained the main parameters of the codes, the full automorphism groups of these structures, and geometric descriptions of the classes of minimum weight codewords.
{"title":"On some codes from rank 3 primitive actions of the simple Chevalley group $ G_2(q) $","authors":"Tung Le, B. Rodrigues","doi":"10.3934/amc.2022016","DOIUrl":"https://doi.org/10.3934/amc.2022016","url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M2\">begin{document}$ G_2(q) $end{document}</tex-math></inline-formula> be a Chevalley group of type <inline-formula><tex-math id=\"M3\">begin{document}$ G_2 $end{document}</tex-math></inline-formula> over a finite field <inline-formula><tex-math id=\"M4\">begin{document}$ mathbb{F}_q $end{document}</tex-math></inline-formula>. Considering the <inline-formula><tex-math id=\"M5\">begin{document}$ G_2(q) $end{document}</tex-math></inline-formula>-primitive action of rank <inline-formula><tex-math id=\"M6\">begin{document}$ 3 $end{document}</tex-math></inline-formula> on the set of <inline-formula><tex-math id=\"M7\">begin{document}$ frac{q^3(q^3-1)}{2} $end{document}</tex-math></inline-formula> hyperplanes of type <inline-formula><tex-math id=\"M8\">begin{document}$ O_{6}^{-}(q) $end{document}</tex-math></inline-formula> in the <inline-formula><tex-math id=\"M9\">begin{document}$ 7 $end{document}</tex-math></inline-formula>-dimensional orthogonal space <inline-formula><tex-math id=\"M10\">begin{document}$ {{rm{PG}}}(7, q) $end{document}</tex-math></inline-formula>, we study the designs, codes, and some related geometric structures. We obtained the main parameters of the codes, the full automorphism groups of these structures, and geometric descriptions of the classes of minimum weight codewords.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"52 1","pages":"207-226"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81289202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Napolitano, O. Polverino, Paolo Santonastaso, Ferdinando Zullo
In this paper we consider two pointsets in begin{document}$ mathrm{PG}(2,q^n) $end{document} arising from a linear set begin{document}$ L $end{document} of rank begin{document}$ n $end{document} contained in a line of begin{document}$ mathrm{PG}(2,q^n) $end{document}: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set begin{document}$ L $end{document}. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing begin{document}$ L $end{document} to be an begin{document}$ {mathbb F}_{q} $end{document}-linear set with a short weight distribution, then the associated codes have few weights. We conclude the paper by providing a connection between the begin{document}$ Gammamathrm{L} $end{document}-class of begin{document}$ L $end{document} and the number of inequivalent codes we can construct starting from it.
In this paper we consider two pointsets in begin{document}$ mathrm{PG}(2,q^n) $end{document} arising from a linear set begin{document}$ L $end{document} of rank begin{document}$ n $end{document} contained in a line of begin{document}$ mathrm{PG}(2,q^n) $end{document}: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set begin{document}$ L $end{document}. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing begin{document}$ L $end{document} to be an begin{document}$ {mathbb F}_{q} $end{document}-linear set with a short weight distribution, then the associated codes have few weights. We conclude the paper by providing a connection between the begin{document}$ Gammamathrm{L} $end{document}-class of begin{document}$ L $end{document} and the number of inequivalent codes we can construct starting from it.
{"title":"Two pointsets in $ mathrm{PG}(2,q^n) $ and the associated codes","authors":"V. Napolitano, O. Polverino, Paolo Santonastaso, Ferdinando Zullo","doi":"10.3934/amc.2022006","DOIUrl":"https://doi.org/10.3934/amc.2022006","url":null,"abstract":"<p style='text-indent:20px;'>In this paper we consider two pointsets in <inline-formula><tex-math id=\"M2\">begin{document}$ mathrm{PG}(2,q^n) $end{document}</tex-math></inline-formula> arising from a linear set <inline-formula><tex-math id=\"M3\">begin{document}$ L $end{document}</tex-math></inline-formula> of rank <inline-formula><tex-math id=\"M4\">begin{document}$ n $end{document}</tex-math></inline-formula> contained in a line of <inline-formula><tex-math id=\"M5\">begin{document}$ mathrm{PG}(2,q^n) $end{document}</tex-math></inline-formula>: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set <inline-formula><tex-math id=\"M6\">begin{document}$ L $end{document}</tex-math></inline-formula>. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing <inline-formula><tex-math id=\"M7\">begin{document}$ L $end{document}</tex-math></inline-formula> to be an <inline-formula><tex-math id=\"M8\">begin{document}$ {mathbb F}_{q} $end{document}</tex-math></inline-formula>-linear set with a <i>short</i> weight distribution, then the associated codes have <i>few weights</i>. We conclude the paper by providing a connection between the <inline-formula><tex-math id=\"M9\">begin{document}$ Gammamathrm{L} $end{document}</tex-math></inline-formula>-class of <inline-formula><tex-math id=\"M10\">begin{document}$ L $end{document}</tex-math></inline-formula> and the number of inequivalent codes we can construct starting from it.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"114 1","pages":"227-245"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77722569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parameters of some BCH codes over $ mathbb{F}_q $ of length $ frac{q^m-1}{2} $","authors":"Liqi Wang, Di Lu, Shixin Zhu","doi":"10.3934/amc.2023007","DOIUrl":"https://doi.org/10.3934/amc.2023007","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"6 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73165496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonexistence of some four dimensional linear codes attaining the Griesmer bound","authors":"W. Ma, Jinquan Luo","doi":"10.3934/amc.2023024","DOIUrl":"https://doi.org/10.3934/amc.2023024","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"17 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82638415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient keyword search on encrypted dynamic cloud data","authors":"Laltu Sardar, Binanda Sengupta, S. Ruj","doi":"10.3934/amc.2022101","DOIUrl":"https://doi.org/10.3934/amc.2022101","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"23 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76036087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Given a cyclotomic field $ K $ and a finite Galois extension $ L $, we discuss the construction of unit-magnitude elements in $ K $ which are not in the image of the field norm map $ N_{L/K}(L^times) $. We observe that the construction of Elia, Sethuraman, and Kumar extends to all cyclotomic fields whose rings of integers are a principal ideal domain, a fact we have not seen appear elsewhere in the literature. We then prove a number of lemmas concerning non-norm elements, and extend the above results to hold for arbitrary cyclotomic ground fields. We give examples of towers of fields and corresponding non-norm elements in both instances. Finally, we apply this to cryptography, defining a novel variant of Learning with Errors, defined over cyclic division algebras with fractional unit-magnitude non-norm elements, and reduce lattice problems defined over ideals in maximal orders in such algebras to the search problem for this form of LWE.
{"title":"Fractional non-norm elements for division algebras, and an application to Cyclic Learning with Errors","authors":"Andrew Mendelsohn, Cong Ling","doi":"10.3934/amc.2023043","DOIUrl":"https://doi.org/10.3934/amc.2023043","url":null,"abstract":"Given a cyclotomic field $ K $ and a finite Galois extension $ L $, we discuss the construction of unit-magnitude elements in $ K $ which are not in the image of the field norm map $ N_{L/K}(L^times) $. We observe that the construction of Elia, Sethuraman, and Kumar extends to all cyclotomic fields whose rings of integers are a principal ideal domain, a fact we have not seen appear elsewhere in the literature. We then prove a number of lemmas concerning non-norm elements, and extend the above results to hold for arbitrary cyclotomic ground fields. We give examples of towers of fields and corresponding non-norm elements in both instances. Finally, we apply this to cryptography, defining a novel variant of Learning with Errors, defined over cyclic division algebras with fractional unit-magnitude non-norm elements, and reduce lattice problems defined over ideals in maximal orders in such algebras to the search problem for this form of LWE.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135212418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we construct a class of generalized quasi-cyclic (GQC) codes with index $ ell $ over finite chain rings. Based on probabilistic arguments, we discuss asymptotic rates and relative distances of this class of codes. As a result, we show that GQC codes with index $ ell $ over finite chain rings are asymptotically good.
在有限链环上构造了一类索引为$ well $的广义拟循环码。基于概率论证,讨论了这类码的渐近速率和相对距离。结果表明,有限链环上索引为$ well $的GQC码是渐近好的。
{"title":"Asymptotically good generalized quasi-cyclic codes over finite chain rings","authors":"Xiangrui Meng, Jian Gao, Fang-Wei Fu","doi":"10.3934/amc.2023034","DOIUrl":"https://doi.org/10.3934/amc.2023034","url":null,"abstract":"In this paper, we construct a class of generalized quasi-cyclic (GQC) codes with index $ ell $ over finite chain rings. Based on probabilistic arguments, we discuss asymptotic rates and relative distances of this class of codes. As a result, we show that GQC codes with index $ ell $ over finite chain rings are asymptotically good.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135699007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shi Wang, Yongqiang Li, Shizhu Tian, Xiangyong Zeng
MDS matrices play an important role in the design of block ciphers, and constructing MDS matrices with fewer xor gates is of significant interest for lightweight ciphers. For this topic, Duval and Leurent proposed an approach to construct MDS matrices by using three linear operations in ToSC 2018. Taking words as elements, they found begin{document}$ 16times16 $end{document} and begin{document}$ 32times 32 $end{document} MDS matrices over begin{document}$ mathbb{F}_2 $end{document} with only begin{document}$ 35 $end{document} xor gates and begin{document}$ 67 $end{document} xor gates respectively, which are also the best known implementations up to now. Based on the same observation as their work, we consider three linear operations as three kinds of elementary linear operations of matrices, and obtain more MDS matrices with begin{document}$ 35 $end{document} and begin{document}$ 67 $end{document} xor gates. In addition, some begin{document}$ 16times16 $end{document} or begin{document}$ 32times32 $end{document} involutory MDS matrices with only begin{document}$ 36 $end{document} or begin{document}$ 72 $end{document} xor gates over begin{document}$ mathbb{F}_2 $end{document} are also proposed, which are better than previous results. Moreover, our method can be extended to general linear groups, and we prove that the lower bound of the sequential xor count based on words for begin{document}$ 4 times 4 $end{document} MDS matrix over general linear groups is begin{document}$ 8n+2 $end{document}.
MDS matrices play an important role in the design of block ciphers, and constructing MDS matrices with fewer xor gates is of significant interest for lightweight ciphers. For this topic, Duval and Leurent proposed an approach to construct MDS matrices by using three linear operations in ToSC 2018. Taking words as elements, they found begin{document}$ 16times16 $end{document} and begin{document}$ 32times 32 $end{document} MDS matrices over begin{document}$ mathbb{F}_2 $end{document} with only begin{document}$ 35 $end{document} xor gates and begin{document}$ 67 $end{document} xor gates respectively, which are also the best known implementations up to now. Based on the same observation as their work, we consider three linear operations as three kinds of elementary linear operations of matrices, and obtain more MDS matrices with begin{document}$ 35 $end{document} and begin{document}$ 67 $end{document} xor gates. In addition, some begin{document}$ 16times16 $end{document} or begin{document}$ 32times32 $end{document} involutory MDS matrices with only begin{document}$ 36 $end{document} or begin{document}$ 72 $end{document} xor gates over begin{document}$ mathbb{F}_2 $end{document} are also proposed, which are better than previous results. Moreover, our method can be extended to general linear groups, and we prove that the lower bound of the sequential xor count based on words for begin{document}$ 4 times 4 $end{document} MDS matrix over general linear groups is begin{document}$ 8n+2 $end{document}.
{"title":"Four by four MDS matrices with the fewest XOR gates based on words","authors":"Shi Wang, Yongqiang Li, Shizhu Tian, Xiangyong Zeng","doi":"10.3934/amc.2021025","DOIUrl":"https://doi.org/10.3934/amc.2021025","url":null,"abstract":"<p style='text-indent:20px;'>MDS matrices play an important role in the design of block ciphers, and constructing MDS matrices with fewer xor gates is of significant interest for lightweight ciphers. For this topic, Duval and Leurent proposed an approach to construct MDS matrices by using three linear operations in ToSC 2018. Taking words as elements, they found <inline-formula><tex-math id=\"M1\">begin{document}$ 16times16 $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M2\">begin{document}$ 32times 32 $end{document}</tex-math></inline-formula> MDS matrices over <inline-formula><tex-math id=\"M3\">begin{document}$ mathbb{F}_2 $end{document}</tex-math></inline-formula> with only <inline-formula><tex-math id=\"M4\">begin{document}$ 35 $end{document}</tex-math></inline-formula> xor gates and <inline-formula><tex-math id=\"M5\">begin{document}$ 67 $end{document}</tex-math></inline-formula> xor gates respectively, which are also the best known implementations up to now. Based on the same observation as their work, we consider three linear operations as three kinds of elementary linear operations of matrices, and obtain more MDS matrices with <inline-formula><tex-math id=\"M6\">begin{document}$ 35 $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M7\">begin{document}$ 67 $end{document}</tex-math></inline-formula> xor gates. In addition, some <inline-formula><tex-math id=\"M8\">begin{document}$ 16times16 $end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M9\">begin{document}$ 32times32 $end{document}</tex-math></inline-formula> involutory MDS matrices with only <inline-formula><tex-math id=\"M10\">begin{document}$ 36 $end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M11\">begin{document}$ 72 $end{document}</tex-math></inline-formula> xor gates over <inline-formula><tex-math id=\"M12\">begin{document}$ mathbb{F}_2 $end{document}</tex-math></inline-formula> are also proposed, which are better than previous results. Moreover, our method can be extended to general linear groups, and we prove that the lower bound of the sequential xor count based on words for <inline-formula><tex-math id=\"M13\">begin{document}$ 4 times 4 $end{document}</tex-math></inline-formula> MDS matrix over general linear groups is <inline-formula><tex-math id=\"M14\">begin{document}$ 8n+2 $end{document}</tex-math></inline-formula>.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"16 1","pages":"845-872"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81941103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}